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Abstract—Tactile sensors, which provide information about the
physical properties of objects, are an essential component of robotic
systems. The visuotactile sensing technology with the merits of
high resolution and low cost has facilitated the development of
robotics from environment exploration to dexterous operation.
Over the years, several reviews on visuotactile sensors for robots
have been presented, but few of them discussed the significance
of signal processing methods to visuotactile sensors. Apart from
ingenious hardware design, the full potential of the sensory system
toward designated tasks can only be released with the appropriate
signal processing methods. Therefore, this paper provides a com-
prehensive review of visuotactile sensors from the perspective of
signal processing methods and outlooks possible future research
directions for visuotactile sensors.
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I. INTRODUCTION

W ITH the rapid advancement of artificial intelligence,
robots have increasingly been utilized for more intri-

cate and complex tasks, such as industrial assembly [17], [18],
human-robot collaboration, and surgery [19], [20]. To perform
these tasks, the robot must not only acquire the force in contact
between the actuator and the environment but also the position
of the end tool within the hand, which heavily relies on the reso-
lution and accuracy of the tactile sensors. To improve the tactile
perception of robots, tremendous sensors have been designed
based on different mechanisms, such as piezoelectric [21], [22],
triboelectric [23], [24], and piezoresistive [25], [26], [27] sen-
sors. Nevertheless, these sensors are limited by the complicated
fabrication process and the expensive data acquisition circuits,
and it is challenging to achieve high-resolution and large-scale
tactile perception in a cost-efficient way.

Compared with tactile perception, visual perception by the
external camera generally has a larger detection area. However,
it is difficult to obtain the pose of the occluded object as well
as the contact information during the manipulation. As shown
in Fig. 1, with the advancement of optical imaging techniques,
researchers have combined visual perception with tactile percep-
tion, which uses cameras to detect the deformation of the sensor
surface [28]. Based on this mechanism, various genius visuotac-
tile sensors have been designed, such as fingertip tactile sensors
like GelSight [5], Digit [8], robotic arms [29], [30], and robot
feet [31]. The most significant function of visuotactile sensors is
3-dimensional (3D) reconstruction. By utilizing high-resolution
optical imaging methods, real-time reconstruction of the contact
surfaces’ 3D shape can be realized by photometric stereo [5],
[32] and binocular imaging [2], [33] principles. In addition, the
visuotactile sensor can also achieve contact area segmentation,
high-resolution force perception [16], [34], [35], slip detec-
tion [36], [37], [38], [39], and mapping and localization [40],
[41], [42], which significantly improve the stability of object
grasping and manipulation. Furthermore, visuotactile sensors
can enable robots with more challenging tasks such as texture
classification [43], [44], hardness classification [45], underwater
grasping [11], cable manipulation [46], etc.
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Fig. 1. Trends in the intersections between the tactile sensor and optical
hardware. Left: Tactile sensors from single-point force sensors to e-skin. Middle:
The green boxes indicate the different parts of the robot designed using the
visuotactile sensors, such as fingers [1], palms [2], arms [3], and feet [4]. The
blue box indicates the application of visuotactile sensors [5], [6], [7], [8], [9],
[10], [11], [12], [13], [14], [15], [16]. Bottom: Optical hardware from RGB
cameras to event-based dynamic vision sensors.

While previous reviews on visuotactile sensors [47], [48],
[49], [50] have discussed the sensor design and fabrication
process, the role of signal processing in visuotactile sensors is
rarely touched. Consequently, this paper summarizes the signal
processing methods and applications of visuotactile sensors
from the following new perspectives:
� The advantages and drawbacks of visuotactile systems with

different structures in terms of sensing skin, illumination
system, and vision system.

� The signal processing techniques used in visuotactile sen-
sors with respect to their performance in contact area
segmentation, reconstruction, force perception, slip detec-
tion, mapping and localization, and simulation-to-reality
(sim-to-real).

� The applications, limitations, and the future development
directions of visuotactile sensors.

The rest of the paper is organized as follows: The sensor
design of the visuotactile sensor is introduced in Section II. The
signal processing method of the visuotactile sensor is introduced
in Section III. Section IV presents the relevant applications of
visuotactile sensors. Section V discusses the current problems
and future research directions of visuotactile sensors. Finally,
Section VI concludes this paper.

II. SENSOR DESIGN

The structure of the visuotactile sensor can be divided into
three parts: sensing skin, illumination system, and vision system,
as shown in Fig. 2. The sensing skin is the core component of
the visuotactile sensor, capable of detecting and representing
information such as force, temperature, and texture through
deformation or color changes upon contact with an object. The
illumination system is tailored to the properties and functions

Fig. 2. The structure of the visuotactile sensor, which includes sensing skin,
illumination system, and vision system.

Fig. 3. A typical structure of the sensing skin includes a support layer, contact
layer, marker layer, reflective layer, and protective layer.

of the sensing skin, enhancing the 3D geometric representation
of the sensor. The vision system serves as the signal collection
unit, capturing the deformation and color information generated
by the sensing skin through optical imaging. The structure of the
visuotactile sensor determines its functionality, and researchers
have designed sensors of various parameters and sizes to meet
different application scenarios. A comprehensive summary of
the mainstream visuotactile sensors is shown in Table I.

A. Sensing Skin

To capture more detailed texture and deformation informa-
tion, sensing skins often adopt a multi-layer structure, which
typically includes a protective layer, a reflective layer, a marker
layer, a contact layer, and a support layer, as illustrated in Fig. 3.
However, depending on the specific application, not all of these
layers may be necessary. In the following sections, we will
discuss the advantages and disadvantages of different sensing
skin designs, taking into account factors such as shape, material,
and markers.

1) Shape: Based on the sensor’s surface geometry, the sens-
ing skin can be categorized into two main types: 2D and 3D. In
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TABLE I
MAINSTREAM VISUOTACTILE SENSOR STRUCTURAL DESIGN AND FUNCTION

this paper, we define the visuotactile sensor with a marginal
convex surface as 2D as well. As shown in Table I, 2D vi-
suotactile sensors include GelSight [5], Digit [8], etc., and 3D
visuotactile sensors include GelTip [62], [88], TouchRoller [89],
Soft-bubble [90], Insight [1], TaTa [11], etc. The 2D visuotactile

sensor is typically mounted on the fingertip to sense geometry
on a 2D plane. On the one hand, the 3D sensor is designed to
be more versatile and can be mounted on fingertips or palms
with an appropriate size, allowing it to sense the shape of the
object from different angles. On the other hand, the 3D convex
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structure of the sensor not only enhances stability when grasping
objects but also provides a larger sensing range. However, the
3D structure also has some problems, such as:
� Complex production process. Creating sensing skins with

a 3D structure is difficult. Especially coating reflective
or marker layers on the 3D surface with a high level of
uniformity and durability.

� Difficult signal processing. Image signal acquisition for
3D structure sensors can be a challenging task. One of the
main difficulties is ensuring uniform illumination of the
structure from all directions. Additionally, the magnitude
and direction of the forces causing deformation at different
contact points can vary greatly, making reconstruction and
perception complex. In contrast, the signal processing for
2D structure is comparatively easier as it allows for better
control of lighting and modeling, and the deformation is
more consistent.

� Challenges in calibration. Before conducting force de-
tection, sensor calibration is often necessary, particularly
for 3D structures where additional contact data must be
gathered.

Most of the 3D tactile sensors currently available have a
convex structure. However, Li et al. proposed a novel visuotactile
sensor called CoTac [39], which has a concave design and is ca-
pable of sensing small tangential forces. This innovative sensor
can be used in a variety of applications, including pharyngeal
swab sampling and feeding.

2) Marker: The human hand possesses an exceptional tac-
tile perception due to the abundance of sensory nerves on the
skin’s surface [91]. Inspired by this, researchers have enhanced
the perception ability of visuotactile sensors by incorporating
markers. Based on the size changes and displacement of the
markers, the sensors can obtain normal force, tangential force,
and slip signals.

In early works, the visuotactile sensor’s markers were pre-
dominantly in a single color [52], which makes it challenging
to distinguish between tangential and normal forces. However,
subsequent research focused on optimizing the marker’s design
to enhance its sensing capabilities. Katsunari et al. proposed a
two-layered structure with red and blue markers at the upper and
bottom, respectively, to achieve more accurate force detection
on convex surfaces [35]. By observing the relative offset of the
markers, the magnitude and direction of the contact force can be
obtained. Lin et al. further optimized this structure by designing
an array of diffusive and transmissive markers on the surface
of the sensor, which is a square color array made of red and
magenta markers [56].

Although the markers can enhance the sensor’s ability to
detect force, they are sparse and cannot provide a high-resolution
force distribution. To solve this problem, Zhang et al. utilized a
dense color pattern instead of a dot matrix, which is a texture
template composed of random pixel dots [79]. This approach
enables the sensor to capture denser point clouds and contact
force information. Although increasing the density of markers
on the sensor surface can improve force resolution, it reduces
the ability to detect texture. Moreover, fabricating denser marker
layers with consistent dot sizes and robustness to shift or detach
during usage becomes difficult.

Despite existing problems, the design of the markers offers
valuable insights for addressing force perception and slip detec-
tion. To mitigate the impact of markers on texture detection, a
dual-modality switching method has been proposed [80]. This
method uses ultraviolet (UV) fluorescent paint to create markers
that are only visible under UV light, allowing for markers and
texture detection to be achieved by switching between UV and
white light.

3) Material: The detection effect of the visuotactile sensor
can be influenced by the hardness, thickness, and transparency
of the material used. Latex, silicone, and polydimethylsiloxane
(PDMS) are commonly used materials for sensor skin. The
choice of material is related to the application scenario and
function of the sensor.

Silicone is widely used in the design of skin sensing for
visuotactile sensors. It is a versatile material that can be used
in the contact layer, marker layer, and reflective layer. Commer-
cial silicone suppliers include Smooth-On, Silicones Inc, and
WACKER. The advantages of silicone are as follows:
� Easy to mold: Simple to process, with minimal equipment

requirements, and the model can be easily obtained through
molding.

� Design flexibility: By selecting various silicone materials
or adjusting the mixing ratios, it is possible to achieve
silicone materials with varying degrees of hardness and
transparency.

� Good compatibility: By incorporating diverse materials
into silicone, such as silver powder and dye, it is possible
to tailor the optical properties of coatings to meet specific
requirements.

Compared with silicone, the process of producing latex film
is more complex. Therefore, most sensors that use latex film [9],
[67] are made from commercially available latex film, which is
inexpensive but difficult to customize. Additionally, latex films
are softer, which means that when gripping objects, the gas must
often be injected into the sensor to increase its stiffness. Latex
has the advantage of possessing higher elasticity and toughness,
allowing it to conform better to the shape of the object being
detected. As a result, it is frequently utilized as a sensing skin
for larger visuotactile sensors.

Besides silicone and latex, PDMS can also serve as a material
for creating visuotactile sensors. PDMS is known for its high
transparency, but it is also harder than the other two materials.
As a result, it is often utilized for sensor surfaces that require
exceptional transparency [92].

4) Functional Layers: In addition to using reflective coating,
researchers enriched the sensory functionality and improved the
gripper’s performance by introducing functional materials and
structures in addition to using the reflective coating.

In terms of more functions, Fang et al. developed a novel
visuotactile sensor that incorporates both texture and tempera-
ture detection [93]. The sensor is designed with a temperature-
sensing region composed of three thermochromic materials,
which can detect temperatures ranging from 5 ◦C to 45 ◦C.
Hogan et al. proposed a dual-mode semitransparent skin that
can rapidly switch between the tactile sensor and visual camera
mode by controlling the internal lighting conditions [94]. The
fusion of tactile and visual information provides a more effective
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approach to quantifying the physical properties of objects. The
unique structural design of the sensor also enhances the gripping
ability of the gripper. For grasping performance enhancement,
Pang et al. designed a soft gripper with a gecko palm-inspired
self-adhesive layer [66]. The layer with a micro-wedges struc-
ture significantly increases the grippers’ load in handling objects
with smooth surfaces.

In addition, the signal processing method of the visuotactile
sensor often has to match the sensing skin. For example, for the
sensing skin with markers, we often determine the contact force
and information such as whether sliding occurs based on the
displacement of the makers. While the perceptual skin without
markers is more suitable for the deep learning method.

B. Illumination System

The design of the illumination system is determined by the
structure of the sensing skin. To achieve different detection
effects, people have to design special illumination circuits to
match the sensing skin. Next, we will introduce two aspects of
the illumination system: the installation position and the color.

The illumination system is mainly installed at the side and
below the sensing skin. The design installed below the sens-
ing skin has a larger illumination range, but this light is not
directional and it is difficult to ensure the consistency of light
intensity at each pixel point in a small space. And the method
installed on the side of the sensing skin uses the sensing skin
as a light waveguide, and the light will propagate inside the
sensing skin. When the sensor is in contact with an object, the
different directions of the contact position will show different
colors. Based on this principle, the reconstruction of the contact
area can be achieved.

There are mainly two types of light, white and RGB. The
function of the white light is to improve the brightness inside
the sensor, because the sensor is usually a closed structure, the
brightness is very low in the absence of light. The RGB light can
improve both the brightness inside the sensor and the contrast
of the perceived skin surface pattern and make it directional. In
addition, Hogan et al. used UV light to illuminate fluorescent
markers on the sensing skin surface and used a time-division
multiplexed circuit to switch between UV and white light [80].
This method not only achieves accurate force perception and
slip sensing but also reduces the influence of markers on contact
texture detection.

From the perspective of signal processing, the function of
the illumination system is mainly to improve the effect of tactile
perception and cooperate with the sensing skin and vision system
to achieve more functions. For example, RGB lighting with the
monocular camera can realize depth reconstruction.

C. Vision System

With the advancements in optical imaging techniques, cam-
eras with miniaturized sizes are now capable of producing
higher-quality images, which opens the door for the develop-
ment of fingertip visuotactile sensors. According to imaging
techniques, vision systems can be categorized into monocular

cameras [5], binocular cameras [2], depth cameras [9], and
event-based dynamic vision sensors (DVS) [55].

The monocular RGB camera is a widely used imaging method
due to its versatility and low cost. Many applications, such as
GelSight [5] and Digit [8], utilize monocular RGB cameras for
imaging. When selecting a monocular camera, the size, field of
view (FOV), focal length, and resolution are crucial factors to
consider. The camera’s size typically determines the sensor’s
size, while the FOV and focal length determines the sensor’s
thickness.

Binocular RGB imaging also is a widely used method for
imaging. This technology involves using two cameras to capture
images of the sensing skin simultaneously and then calculating
depth information through binocular stereo matching. One of
the main advantages of this method is that it is not affected by
lighting conditions, and only requires intrinsics and extrinsics
calibration. However, the short baseline of the binocular camera
can make it difficult to achieve high detection accuracy, which
is primarily determined by the size of the visuotactile sensor.

In addition to binocular imaging, depth cameras also allow
for the detection of depth information on the surface of the
sensing skin. However, due to their larger size, they are mostly
used in sensors with larger dimensions, such as the Soft-bubble
sensors [9]. Compared to RGB cameras, depth cameras can pro-
vide more stable stereo-depth images and eliminate the need for
calibration. But they are more expensive and difficult to promote
on a large scale. Additionally, Naeini et al. have also explored
the use of event cameras as internal sensing components for
visuotactile sensors [55]. These cameras offer low time delay,
high dynamics, and sensitivity to slip information. However,
they are expensive and have low resolution as well as a poor
signal-to-noise ratio.

Similar to sensing skin, the vision system is critical to the sig-
nal processing method of the visuotactile sensors. For example,
for depth reconstruction, monocular cameras are often combined
with photometric stereo methods and binocular imaging is often
used when binocular cameras are used. When a depth camera is
used, it can be obtained directly from the depth camera.

III. SIGNAL PROCESSING FOR VISUOTACTILE SENSOR

Compared to traditional electrical signals [95], the visuo-
tactile sensor acquires 2D image signal, allowing for signal
processing through image processing algorithms. Signal pro-
cessing for visuotactile sensors typically involves six key areas:
contact area segmentation, 3D reconstruction, force perception,
slip detection, mapping and localization, and sim-to-real.

A. Contact Area Segmentation

When the visuotactile sensor contacts an object, the sensing
skin’s color and texture will change. Extracting information
about the contact location and area can further improve the
stability and success rate of the robot in grasping the object.
Generally speaking, there are two primary methods for ex-
tracting visuotactile information: traditional image processing
methods [78] and deep learning methods [67]. Traditional image
processing methods with explicitly mathematical algorithms are
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usually of fast computational speed, high frame rate, and low
latency. Zhang et al. used the background difference method
for visuotactile information extraction, which involves using
image difference to remove the influence of background factors,
denoising by erosion and collision, and finally extracting the
maximum connected domain as the contact area [74]. However,
this method might easily fail at scenes with drastic lighting
changes. To address the problem, Li et al. proposed a method
for extracting visuotactile information in highly dynamic scenes
using the TaTa gripper [11]. Their approach utilizes a deep learn-
ing network with Fully Convolutional Networks (FCN) [96]
to segment contact regions. While this method offers greater
robustness, it requires a significant amount of labeled data and
has a slower computational speed.

B. 3D Reconstruction

Compared with contact area segmentation, 3D reconstruction
is a more difficult problem. The goal of this task is to generate
a dense point cloud of depth information on the sensor surface,
which is particularly useful in improving the accuracy of object
pose estimation when visual occlusion occurs. This section
will discuss mainstream shape reconstruction techniques for
visuotactile sensors based on photometric stereo, luminance
reconstruction, binocular imaging, structured light & time of
flight (ToF), dense optical flow, and deep learning.

1) Photometric Stereo Methods: This method is a widely
used technique for reconstructing the depth of objects [97],
[98], [99], [100], which is achieved by mapping the luminance
information of pixel points to normal vector information. One
key advantage of this method is its low implementation cost, as
it can be achieved using RGB cameras. Additionally, it offers
high reconstruction accuracy in a small space. However, a major
disadvantage is that it requires a high-quality internal light field
of the sensor. Therefore, when using this method, it is crucial to
design and optimize the sensor’s lighting system.

The photometric stereo method is adapted to the sensing skin
that satisfies the condition of Lambert reflection, which has a
uniform surface reflection function. It defines the surface of the
sensor as z = f(x, y). Assuming that the X, Y coordinate system
of the image coincides with the coordinate system of the sensor
surface, the gradient (p, q) at the (x, y) point can be expressed
as

p = fx =
∂z

∂x
, (1)

q = fy =
∂z

∂y
. (2)

Then the normal vector at the point (x, y) is (p, q,−1)T . We
assume that there are no cast shadows and reflections on the
sensor surface and that its shape and brightness depend only
on the normals. Since the sensor surface to be reconstructed
is composed of many pixel blocks, and the normal vector of
each pixel point indicates its direction, we can complete the
reconstruction of the sensor surface information by calculating
the normal force of each pixel point. We define the illumination
at (x, y) as I(x, y) = R(p, q), where (p, q) is the gradient at

Fig. 4. Visuotactile sensor signal processing framework.

Fig. 5. Reconstruction effect with photometric stereo method [32].

(x, y). The reflectance function R(p; q) maps values from a two-
dimensional space into a one-dimensional space of intensities.

The function R(p, q) represents a mapping from a 2D space
to a one-dimensional (1D) luminance space. In this case, an
intensity value will contain multiple sets of gradient mappings.
To eliminate the singularity, we will choose multiple channels
for different lighting conditions. In general, we can choose three
channels to estimate the pixel distribution, i.e.,

−→
I (x, y) =

−→
R (p(x, y), q(x, y)), (3)

−→
I (x, y) = (I1(x, y), I2(x, y), I3(x, y)), (4)

−→
R (p, q) = (R1(x, y), R2(x, y), R3(x, y)). (5)

In this way, we need to establish an expression between the
color change and the surface normal [38]. A commonly used
calibration method involves using a known-size ball to contact
the sensor surface at various locations for sampling. By collect-
ing data on the correspondence between the color change and
surface normal, a lookup table can be created, and the optimal
solution can be found using search and clustering methods. To
enhance the accuracy of the results, Ramamoorth et al. utilized
a spherical harmonic function for further optimization [101],
which, however, suffered from slow computational speed. To
address this issue, Yuan et al. employed a fast Poisson solver with
discrete sine transform (DST) to accelerate the solving process,
enabling parallel computation of the data [5]. Wang et al. further
optimized the above method by using neural networks instead of
the look-up table method and by using the Unet networks [102]
to achieve depth reconstruction in a two-light case or even with
a single light [32], and the results are shown in Fig. 5.

2) Luminance Reconstruction Methods: Besides the light
field gradient, the luminance can represent depth information
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Fig. 6. Luminance-based 3D reconstruction method [71]. This method first
uses the background difference method to remove the noise and then calculates
the depth based on the luminance information.

Fig. 7. The principle of binocular imaging. (a) Ideal situation: binocular
camera imaging planes are parallel to each other. (b) Non-ideal situation: the
binocular camera imaging plane has an angular difference.

as well. As shown in Fig. 6, Lin et al. designed a translucent
membrane that contains a translucent layer and an absorbing
layer that not only resists external light but also absorbs light
from inside the sensor [71]. When contact occurs, the deeper the
contact area is pressed, the darker the output color will be. Based
on this principle, fitting the mapping relationship between the
luminance and depth information of each pixel point can realize
the reconstruction of the sensor surface information.

3) Binocular Imaging Methods: Binocular imaging [103],
[104], [105] is also one of the methods to achieve the 3D
reconstruction of the sensing skin. Similar to the human eye,
binocular imaging can acquire depth information by calculating
the disparity between two cameras at different locations when
photographing the same object.

The principle of binocular imaging assumes that the baseline
of the camera is b, the depth of the target is D, the focal length is
f , and the distance difference between the two cameras is d, as
shown in Fig. 7(a). The geometric relationship can be expressed
as

D =
b× f

d
. (6)

In ideal conditions, the cameras are in a uniform plane, but
the optical centers of the two cameras are not in the same plane
in most practical cases, as shown in Fig. 7(b). To make the
depth calculation more convenient, it is necessary to convert
the non-ideal conditions to ideal conditions by image correction
method [106]. The error of binocular imaging in depth detection

�D can be expressed as follows

D +�D =
b× f

d+�d
, (7)

�D =
b× f

d
− b× f

d+�d
, (8)

�D = D − 1
1
D + �d

b×f

. (9)

Equation (8) explains that when the baseline and focal length
are constant, the accuracy of parallax d determines the accuracy
of depth imaging, and smaller parallax deviation brings smaller
depth deviation. In addition to parallax, the size of the baseline
and focal length will also have an impact on the detection
accuracy. Equation (9) shows that a longer baseline and focal
length will improve the depth accuracy. Due to the limitation
of the size of the optical-tactile sensor, the size of the binocular
camera is inevitably small. Therefore, reducing the parallax error
become important. Binocular imaging is based on the principle
of feature matching, and it is difficult to achieve good detection
accuracy for sensor surfaces with few feature points.

To solve this problem, Zhang et al. set seven markers on
the sensor surface and calculated the change of distance and
displacement of each marker by binocular imaging method [33].
The problem with this method is that the number of markers is
too small and it is difficult to accurately reflect the deformation of
the sensing skin surface, but the increase in the number of mark-
ers will increase the difficulty of marker matching. To achieve
dense markers matching, Cui et al. proposed a structure-based
markers stereo matching method, which first detects markers
on the sensor surface and later performs a look-ahead sorting
algorithm to match markers in the images captured by the
binocular camera [2]. In fact, the monocular can also achieve
binocular imaging. Zhang et al. changed the detection direction
of the camera through the mirror and acquired images of two
mirrors through a single camera. This method not only can
get high-precision binocular images but also can reduce the
cost [75]. In addition to the matching error, the refraction of the
sensing skin also affects the detection. To obtain more accurate
depth information, Hu et al. proposed a curved visuotactile sen-
sor GelStereo Palm [2] and used GP-RSRT (Refractive Stereo
Ray Tracing model for GelStereo Palm) to solve the refraction
problem generated when light passes through the elastomer and
air [84]. After experimental tests, the method can achieve an
average perception error of 0.21 mm.

4) ToF & Structured Light Methods: Compared with binoc-
ular imaging, ToF & structured light methods [107] mostly
use the active projection method, so they have higher detection
accuracy and interference resistance. ToF is a method that uses
the measurement of the light time of flight to obtain distances.
This method is highly adaptable and can obtain valid depth
information regardless of whether the object has feature points
or not, so the method can be applied to the reconstruction of
convex surfaces without markers. Structured light [98], [99],
[108] is a system that comprises a projector and a camera, used
to capture specific light information projected onto an object’s
surface and background. This information is then analyzed to
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determine the object’s position and depth, thereby reconstructing
the entire 3D space. However, ToF & structured light methods
require high-quality projection equipment and cameras, which
can be expensive.

To reduce costs, researchers often use readily available depth
cameras like Intel Realsense [109] and Pmd [110]. Alspach
et al. designed a tactile sensor that can detect up to 15 cm in
diameter, using a latex elastic film as the sensing skin and a
Pmd CamBoard Pico Flexx camera as the imaging device [9].
Li et al. improve the Soft-bubble by using the Realsense L515
camera with higher detection accuracy as the sensing device and
designed a passively retractable three-finger platform to achieve
object grasping. The sensor can achieve object classification and
grasp based on tactile information [67]. The major factor that
greatly limits this method to scale up is the high costs.

5) Dense Optical Flow Methods: Although binocular imag-
ing can achieve 3D reconstruction, it is difficult to obtain high-
resolution depth reconstruction with sparse markers. To solve
this problem, Du et al. proposed a scheme using a dense color
pattern instead of a dot matrix and employed a dense optical
flow algorithm to track the deformation of the elastomer surface,
which relies on monocular RGB to achieve high resolution and
high accuracy depth reconstruction [111]. Zhang et al. further
optimized the hardware structure and algorithm and proposed
a new generation of the visuotactile sensor, DelTact [79]. Li
et al. combined binocular imaging with a dense color pattern
to design a sensor with a detection accuracy of 10 μm and a
temporal resolution of 11 ms, which can be used for 3D traction
stress measurement [112].

6) Deep Learning Methods: Although binocular imaging
and the dense optical flow method can achieve good results
in 3 d reconstruction, they are both only applicable to sensors
where makers are present. For the 3D reconstruction of sensors
without markers, deep learning is a more general approach that is
independent of the sensor surface shape and lighting conditions.

To achieve the depth reconstruction of DenseTact [10] (a
3D visuotactile sensor without markers), Do et al. proposed
an adaptive depth information reconstruction network, whose
input information is the image captured by the camera and
the output is the depth information of the contact location.
Nevertheless, this method requires a large amount of reference
data (29,200 training data and 1,000 test data are collected in
the experiments).

C. Force Perception

Force perception is one of the most important functions of
tactile sensors. Accurate and stable force perception not only
improves the manipulation and control of robots but also ensures
human-robot interaction safety. For visuotactile sensors, current
force perception methods are mainly based on marker detection,
finite element modeling (FEM), and deep learning.

1) Markers Detection Methods: As shown in Fig. 8, to im-
prove the detection effect, marker layers of different structures
are designed, which will greatly help the sensor sense the forces
in different directions. In practical applications, the tangential
and normal forces can be estimated by extracting the change

Fig. 8. Different types of markers. (a) Single color dot markers array.
(b) Dual-color dot markers array. (c) Dual-color square markers array.

of size and position of the marker, which is called the markers
detection method. Obinata et al. found that the tangential and
normal forces can be obtained by calculating the offset of
markers that coupled with each other [34]. In his experiment,
four points in the central region of the sensor were marked in
red, the offset of the red makers in the central region was used to
represent the tangential force, and the radius of the contact area
was used to represent the normal force, which is an intuitive and
effective way, but the resolution is low. Afterward, Obinata et al.
further designed a sensor with a two-layer structure [35], where
each layer of the sensor has markers of different colors, and
the contact force is calculated by detecting the relative offsets
of the two markers of different colors. To further improve the
spatial resolution of the sensor, Lin et al. designed overlapping
double-layer square markers based on the principle of diffuse
and transmission of light. The shear deformation is determined
from the center of mass of the marker, and the normal deforma-
tion is obtained by the color change of the markers [56].

Apart from hardware, algorithmic optimization can also
achieve the decoupling of the two forces. Sato et al. proposed
a method for normal force, tangential force, and moment de-
composition using the Helmholtz-Hodge Decomposition algo-
rithm [113], which is commonly used in computational fluid
mechanics and can decompose arbitrary optical flow fields into
rotational and scattering components. This method has high data
efficiency and low complexity, in the real-world experiment,
the calibration of the sensor only uses 300 data points. Al-
though the force detection method based on markers has a good
detection effect, this method is mainly for visuotactile sensors
with markers, and cannot be applied to force sensors without
markers.

2) FEM Methods: The relationship between sensor deforma-
tion and contact forces can also be studied from the perspective
of materials. The FEM methods are designed for tactile sensors
with markers, which have a high resolution. Ma et al. combined
FEM [114] with markers to predict the deformation of the sensor
by using the offset of the markers as input and then estimating
the magnitude of the contact force [16]. The method combines
information such as Young’s Modulus and Poisson’s ratio of the
sensor surface so that the dense contact force information of the
sensor surface can be established with fewer data.

3) Deep Learning Methods: To achieve force perception for
visuotactile sensors without markers, the deep learning-based
force perception approach is employed. Kyung et al. proposed
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Fig. 9. Calibration System. (a) Manual calibration system [28]. (b) Automatic
calibration system [1].

a transformer-based contact force detection method for Dense-
Tact [10], which can segment the contact position and extract
force on sensors without markers. However, this method only
outputs an overall contact force value for a single image. To a
dense contact force heatmap, Sun et al. proposed a network [1]
that can detect the contact force of each pixel using the ResNet
network [115], which can reach a spatial resolution of 0.4 mm
with the force detection accuracy of 0.03 N.

4) Data Acquisition: Both markers detection methods and
deep learning methods are data-driven, so calibration is an
important part of realizing force sensing for visuotactile sensors.
Before performing force calibration, researchers need to build a
platform containing force sensors, probes, and precision slips.
As shown in Fig. 9, calibration systems can be divided into
manual calibration [28] and automatic calibration [1]. When the
amount of collected data is small, the manual calibration system
can meet the requirements, but when the amount of data collected
is large, the automatic calibration system becomes necessary.

D. Slip Detection

Slip detection technology can improve the stability of the
robot in object grasping and operation, especially for manip-
ulating irregularly shaped or fragile objects, where the gripping
force and gripping strategy need to be adjusted in time according
to the slip signal [116]. Moreover, slip detection can be applied to
human-computer interaction and virtual reality scenarios. This
is because slip signals contain dynamic and detailed interaction
information, and the efficiency of human-computer interaction
can be improved by slipping commands. Slip information can
be obtained from different physical quantities, such as vibra-
tion [117], temperature [118], tangential force [119], etc. The
most common method for visuotactile sensors is to obtain slip
information based on the displacement of the surface marker.

However, the displacement of the marker not only combines
the slip information but also reflects the tangential and normal
forces. As shown in Fig. 10, slip occurs when the tangential
force on the sensor surface is greater than the frictional force.
To extract the slip information, Watanabe et al. proposed the
slip margin measure of “stick ratio” [36], which compares the
difference between the displacement of the sensor center point

Fig. 10. The process of slip occurs. (a) When the force is perpendicular to
the contact plane, no slip occurs. (b) Slip will occur when there is a horizontal
component of the contact force, and the horizontal force is greater than the
frictional force. From red to blue indicates the contact force from large to small.

and the displacement of the stick region. To verify the effect
of slip information on improving the grasping success rate, a
slip detection experiment was designed and the experimental
results surface that the slip signal is very helpful in improving
the grasping success rate. Yuan et al. further analyzed the rela-
tionship between the displacement of markers and shear, partial
slip, and slip, and proposed a method to determine whether slip
occurs based on the entropy of the displacement field offset
distribution [37]. They found that the more inhomogeneous the
distribution of the displacement field, the higher the entropy, and
the higher the possibility of slip, but this method is only effective
when the surface of the contact object is flat and the texture of
the contact surface is small.

Dong et al. proposed a method to detect slippage by tracking
the relative displacement of the markers and the object [38].
Slip is considered to have occurred when there is a significant
displacement of the contact position between the markers and
the object. The method was tested on 37 objects and achieved
a slip detection accuracy of 71%. Dong et al. further analyzed
the causes of slip occurrence from the physical and mechanical
perspectives. Under the assumption that the object in contact is
a rigid body and the motion of the object on the sensor surface
is a 2D rigid body motion, the deviation of the real motion field
detected by the sensor from the rigid change of the 2D plane is
used as the basis for judgment [120]. This method can achieve
slip detection without any prior knowledge, 240 tests have been
performed on 10 objects, and the detection accuracy can reach
86.25%. Sui et al. proposed an incipient slip detection method
based on the force and deformation distribution information of
the sensor, which initially determines the central region of the
rod by the force distribution, and later detects the direction and
magnitude of slip in the whole contact region. To verify the
effectiveness of the method, they compared the actual scene
with the finite element analysis software, and the relative error
of detection was within 10% [121]. The slip detection method
combined with finite element analysis has better interpretabil-
ity and stability, providing reliable theoretical support for the
understanding of the mechanism of slip generation.

Data-driven slip detection is a research hot spot, which has
better generality but requires a large amount of data. Zhang et al.
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Fig. 11. Mapping and localization. (a) Edge contour detection [72]. (b) In-hand
object pose estimation [41]. (c) Object pose estimation in the scene [124].

proposed a slip detection network based on LSTM [53], the
model takes a sequence of 10 groups of sensors as input, and
each sequence contains a deformation field and its projection on
the x and y axes. In the experiment, 12 daily objects were tested
and the classification accuracy reached 97.62%. James et al.
proposed a support vector machine-based slip detection method
and applied the algorithm to the Tactile Model O (T-MO) robotic
hand. To test the effectiveness of the slip detection algorithm in
a real-world scenario, two experiments are designed: one is to
make the object slip by adding heavy content to the grasped
container, meanwhile using the slip sensing algorithm to detect
the occurrence of the slip and adjust the grasping force in time.
The other is to test the minimum force required to grasp an object
by slip detection. Visual-tactile fusion provides a new solution
to the problem of detecting object slipping. Li et al. proposed
a slip detection method based on deep neural networks (DNN),
which takes 16 images of visual and tactile sensations as an
input sequence [122]. To verify the detection effectiveness of the
algorithm, more than 120 grasping experiments were performed
and achieved a detection accuracy of 88.03%.

In addition to the algorithm design, hardware optimization can
also improve the effectiveness of slip detection. Maldonado et al.
designed a finger with a hole to detect the texture and distance of
an object by placing a micro sensor inside the hole [123]. When
the object slips along the contact area, the texture of the object
detected by the sensor will change. According to this principle,
we can determine whether a slip has occurred. However, the
disadvantage of this design is that it cannot detect slips in contact
with smooth or transparent objects.

E. Mapping and Localization

Mapping and localization is a crucial technique used to deter-
mine the position and orientation of an object in a coordinate
system. This method finds extensive applications in various
fields such as grasping, navigation, and augmented reality. In
addition to reconstructing the 3D information of the contact
area, visuotactile sensors can also leverage priori knowledge
to calculate the position and pose of the object being touched.
As shown in Fig. 11, mapping and localization of objects can be
broadly classified into three categories: edge contour detection,
in-hand object pose estimation, and object pose estimation in
the scene.

1) Edge Contour Exploration: Exploring object contours
through tactile perception is meaningful for enabling object

grasping in low-visibility scenarios. However, small-size visuo-
tactile sensors such as GelSight and Digit are limited in their
ability to acquire global information about objects via a single
contact.

Lepora et al. proposed a deep learning approach for achieving
object contour exploration [125], which involves using neural
networks to extract the contour of contact between the Tac-
Tip [52] and the object, and by edge following to achieve
object shape perception. This approach is effective in accu-
rately perceiving the shape of objects through tactile sensing.
A similar work was presented on surface following using a
GelSight sensor in [126]. In a recent study by Lepora et al., an
optimized version of the previous model was proposed, called
PoseNet [72]. This deep learning-based tactile servo control
model is capable of detecting the contours of surfaces and edges
of objects. The authors tested the model’s generality by applying
it to three different sensors, namely Digit [8], DigiTac [72],
and TacTip [52].

2) In-Hand Object Pose Estimation: Visuotactile sensors can
also improve the accuracy of object pose estimation. The esti-
mation of the pose of an object in hand is one of the challenging
topics in the field of robotics. Since the fingers of the robot
will block the object when the gripper grasps it, it is difficult
to estimate the object’s pose accurately by vision. However, the
application of visuotactile sensors further promotes the develop-
ment of in-hand pose estimation of objects. Bauza et al. proposed
a tactile sensing method for in-hand object localization, first
establishing a mapping of tactile and object local shapes through
a data-driven approach, followed by object localization through
a CTI-ICP-N approach, which combines closest tactile imprint
(CTI) with ICP iterative closest point (ICP) [127]. Here, N
denotes the number of closest images matched for the first time
based on tactile information. However, this approach requires
collecting a large amount of data. To reduce the workload of
data collection, Villalonga et al. proposed a method to establish
a mapping between tactile impressions and local shapes from the
simulator and used data augmentation to reduce the differences
between real scenes and simulated data [128]. To detect object
in-hand pose changes in the presence of occlusion, Anzai et al.
proposed a deep gated multi-modal learning method, which can
be generalized to unknown objects [42]. Kuppuswamy et al.
proposed a step-wise in-hand object pose estimation method
based on Soft-bubble [9], which first uses the forward model to
predict the deformation of the object when contact occurs with
the gripper, and then uses the inverse model to extract the region
where the contact between the sensor and the object occurs, and
finally uses ICP to achieve the pose estimation of the in-hand
object [41]. Prior works using tactile array sensors to estimate
the object pose [129] or localize the contact [130] could also be
applied with visuo-tactile sensors.

3) Object Pose Estimation in the Scene: For object pose
estimation in the scene, vision detection is the mainstream
method. Although vision detection has good results in obtaining
the outline information of the object, it is very difficult to
detect some detailed texture information. And the addition of
tactile information will be a major help in improving detection
accuracy.
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Wang et al. proposed a tactile-assisted object monocular depth
reconstruction method, which initially roughly reconstructs the
outline of the object by monocular vision, and then updates
and optimizes the outline information of the object by tactile
feedback [124]. Suresh et al. proposed a Monte Carlo-based
global localization method for contact position, which can obtain
the position and information of the sensor relative to the object
based on the position of the sensor in contact with the object, and
record the movement path of the sensor [131]. Chaudhury et al.
built a perception platform with a depth camera, color camera,
and tactile sensors, and improved the accuracy of object pose
estimation by collocated image [40]. The detection method first
finds the target object guided by visual detection, afterward uses
the depth image to estimate the object’s pose, and finally, the
pose is calibrated using the tactile sensor.

F. Sim-to-Real

Reinforcement learning [132], [133], [134] offers innovative
approaches for tackling complex robot control tasks in challeng-
ing environments. However, the low sampling efficiency of the
learning approach can jeopardize the equipment’s durability in
real-world scenarios. And model training demands high-quality
large datasets to ensure reliability. To address these issues, the
imaging principle of the sensor has been leveraged to simulate
the signal generation process using a simulation engine. This
approach enables the collection of a significant amount of useful
data in a short time and overcomes the problem of sensor aging.
Gomes et al. proposed a tactile information simulation method
in Gazebo [135] that simulates the optics in a real scene using
the Phong’s shading model [136]. The method first captures the
depth map of the object surface through the depth camera in
the simulator and then acquires the height map of the deformed
membrane by applying bi-variate (2-D) Gaussian filtering.

However, this method mainly considers the projection of
light and does not take into account the physical properties of
refraction and reflection of light in the process of propagation. To
get more realistic contact information, Agarwal et al. proposed a
rendering optical simulation system based on the physics-based
rendering (PBR), which allows more flexibility in modifying
the optical properties of lights, cameras, and elastic films [137].
This approach allows for more realistic simulation images but
requires high-performance computers. To improve the speed of
calculation, Wang et al. used PyBullet [138] as the physical inter-
action software to perform light rendering and post-processing
of contact information through OpenGL [139], which is fast,
flexible, powerful, and supports rendering shadows to obtain
more realistic simulation data [140]. Most previous studies have
focused on how to implement the transition from simulation
results to the real world (Sim-to-Real), Jianu et al. bridged the
simulation-reality gap by learning the surface artifacts from
real data via a CycleGAN network [141], which was extended
in [142]. Chen et al. designed a bi-directional generator that can
implement Real-to-Sim and Sim-to-Real [143], which also uses
the Domain Adaptation method based on CycleGAN [141].

Although the above methods can obtain more realistic sim-
ulation data, they are achieved purely by optical rendering and

do not take into account the physical deformation of the sensor
in contact with the object. Chen et al. built a visuotactile sensor
simulation environment using the Taichi [141], an open-source
computer graphics language that can be used in 3D object
simulation and physics simulation, which is not only compatible
with Python but also has high computational efficiency [144].

Apart from simulating the deformation information during
contact, force information can also be obtained from the simula-
tion. Si et al. proposed a framework that combines the marker’s
motion field of sensor elastic deformation with optics, which
accurately simulates the texture information during contact and
achieves the simulation of the marker’s motion field [145].
Xu et al. proposed a penalty-based tactile model to calculate
the mechanical information generated by the contact between
each point and the object in the simulation environment, the
method can not only generate tangential and normal forces but
also achieve a computational speed of 1,000 frame/s [146].
To evaluate the simulator performance, they implemented a
peg-insertion task by the method of data migration, and achieve
an 83% success rate in the real world when trained entirely based
on the simulation environment.

To further improve the versatility of the simulation system,
Church et al. developed a Sim-to-Real and Real-to-Sim deep
learning framework based on the gym [147] simulation envi-
ronment [148]. Still, initially, this framework was developed for
TacTip [52]. Then, to improve the generality of the framework,
Lin et al. developed Tactile Gym 2.0 [149], which can be
adapted to TacTip [52], Digit [8], and DigiTac [72]. Recently,
Gomes [150] investigated how to simulate light paths in curved
surfaces, with validation of simulating the highly curved GelTip
sensor [62].

IV. APPLICATION OF VISUOTACTILE SENSORS

In this section, we will introduce the applications based on
visuotactile sensors. With a large sensing area and high resolu-
tion, the visuotactile sensors can achieve many challenging tasks
such as fabric classification, shape classification, peg-in-hole
insertion, etc.

A. Classification

Fabrics are common items in daily life, but their classifica-
tion is very challenging because they not only have different
textures but also different patterns. To obtain more detailed
texture information, Yuan et al. used visuotactile perception
technology and visual perception technology to improve the
classification accuracy of fabrics [43]. They collected a large
amount of training data using GelSight and RGB cameras. And
using visual, tactile, and visual-tactile fusion methods for fabric
classification, they demonstrated that the addition of tactile
perception effectively improves the classification accuracy of
fabrics. In [154], the correction of features in visual and tactile
data of fabric textures was maximized so as to weakly pair visual
and tactile perception. However, in both works the process of
tactile data and visual data acquisition process is very tedious. To
achieve automated data acquisition and classification, as shown
in Fig. 12(a), Yuan et al. improved the previous method by
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Fig. 12. Application of visuotactile sensors in classification. (a) Clothing material classification [44]. (b) Fossil classification [151]. (c) Hardness classification [45].
(d) Shape classification [90]. (e) Classification of transparent objects [152]. (f) Classification of objects in hand [57]. (g) Liquid classification [153].

actively perceiving the type of clothes by touch, which first
obtains the appropriate grasping position by vision, and then
using a visuotactile sensor to obtain texture information [44].
The method can acquire 11 attributes of test cloth samples such
as clothing thickness, hardness, fuzziness, etc., and achieves
73% classification accuracy on 153 fabrics. Some recent works
also investigated spatio-temporal attention [155] or cross-modal
perception [156] in fabric texture perception. In addition to fabric
classification, In addition to fabric classification, Fang et al.
proposed a fabric defect detection method based on visuotac-
tile sensors, which can achieve close to 100% detection accu-
racy. Similar to cloth, the classification and detection of fossils
are equally challenging. Fossils gradually lose their texture in
weathering, so it is difficult to achieve accurate texture detection
relying on visual inspection. As shown in Fig. 12(b), to improve
the classification accuracy of fossils, Zhang et al. optimized the
elastic film by metal foil plating process and achieved 100%
classification accuracy in the experimental test [151].

Visuotactile sensors can also be used for hardness classifi-
cation. Yuan et al. overcomes the influence of object shape and
texture on hardness classification [45]. They designed a recursive
neural network that uses the video sequence of GelSight and
object contact (Fig. 12(c)) as input. This method can achieve
hardness recognition of objects with similar shapes, but there are
limitations for some objects with complex shapes or spine sur-
faces. In addition to hardness classification, Chen et al. applied
visuotactile sensors to the field of fruit ripeness classification,
which was used to determine the ripeness and health status of
fruits by obtaining their hardness and surface characteristics,
and achieved a classification success rate of over 92% [157].

Object shape perception is also a characteristic application of
the visuotactile sensors. Limited by the size of the sensor, it is

unlikely to obtain all the information about the contacted object
at one time. To solve this problem, contour tracking algorithms
are proposed. As shown in Fig. 12(d), Alspach et al. designed a
visuotactile sensor with a perceptual diameter of 150 mm which
utilizes a latex film as the elastic surface [90]. The sensor expands
the elastic membrane by inflating it to obtain greater sensing
depth. This large-area, high-resolution visuotactile sensor can
acquire the texture, and shape of an object through a single touch.
In addition, visuotactile sensors can also be integrated into a
multi-finger gripper. Zhang et al. designed a five-finger gripper
with a visuotactile sensor as palm (Fig. 12(e)), which has the
capability of both texture and temperature detection. Based on
this gripper, they proposed a multimodal fusion method for trans-
parent object classification, which can achieve close to 100%
classification accuracy for attributes such as style, transparency,
and temperature of transparent objects, and 98.75% accuracy for
texture recognition. Ward et al. mounted visuotactile sensors on
the fingertips of a five-fingered gripper as Fig. 12(f) depicted and
achieved object classification by acquiring tactile information
when grasping objects [57].

Visuotactile sensors also enabled many creative classification
applications. Huang et al. proposed a liquids viscosity and
volume prediction scheme [153], as shown in Fig. 12(g). To
achieve liquid property prediction, they introduced a physical
model to analyze the oscillation signal and estimate the liquid
properties by a Gaussian Process Regression (GPR) model. This
method can achieve a classification accuracy of 100% for water,
oil, detergent, etc. The height regression accuracy of sugar water
can reach 0.56 mm and the concentration regression error is
15.3 wt%. In addition, Hanson et al. designed a parallel gripper
with a spectrometer that enables the classification of liquids by
analyzing spectra [158].
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Fig. 13. Application of visuotactile sensors in grasping. (a) Underwater object grasping [11]. (b) Transparent object grasping [159]. (c) Tactile perception-based
grasping strategy [160]. (d) Gravity distribution perception [161].

B. Grasping

Grasping [162], [163], [164] is a basic and important func-
tion of robots, which can be widely used in garbage sorting,
assembly line handling, and home service. Most of the current
grasping tasks are done by vision, but for some low-visibility
environments with low light or smoke, it is difficult to achieve
object detection relying only on visual perception, and the
development of visuotactile perception technology has given
a great impetus to improve the application range of robots. To
solve the problem of object grasping under low visibility, Li et al.
proposed a gripper with a large detection area and high resolution
of tactile perception capability named TaTa [11], which utilizes
the refractive index matching principle and particle blocking
grasping principle to achieve universal object grasping, as shown
in Fig. 13(a).

Besides low-visibility scenes, the detection of transparent
objects is also a major difficulty in the field of vision detection.
Transparent objects have special optical properties that not only
have less texture information but also lose their depth informa-
tion in depth cameras. To solve the transparent object grasping
problem, Jiang et al. proposed a vision-guided transparent object
grasping framework, which firstly obtains the poking point
by segmenting the network, and then uses GelSight to obtain
the tactile information of the point and generates the grasping
action [159], as Fig. 13(b) shows. However, this method can
only be applied to objects with prior information. To achieve the
grasping of unknown objects, Li et al. proposed a visual-tactile
fusion transparent object grasping and classification framework,
which first detects the general position of the object by vi-
sion, then calibrates the grasping position using touch and
finally achieves the classification of transparent objects using
vision-touch fusion [165]. After experiments, the framework
improves the success rate of grasping transparent objects in
complex backgrounds by 36% and the classification rate by
39%. Besides visual-tactile fusion, Li et al. combined vision,
touch, and hearing to help robots achieve object grasping in
more complex situations such as stacking, which proved the
importance of multimodal perception to solve robot grasping in
chaotic scenarios [166].

Visuotactile perception not only achieves the classification of
texture, hardness, and shape but also perceives force and slip

information. To improve the grasping success rate, Calandra
et al. proposed an end-to-end action state model based on
visuotactile perception, which evaluates the current grasping
state and the next candidate action to decide the next step to
be taken [160], as shown in Fig. 13(c). This method improves
the robot’s grasping ability in three main ways: 1. Increase the
grasping success rate. 2. Reduce the number of grasping position
adjustments. 3. Achieve object grasping with minimal force.
Besides the grasping position, Kolamuri et al. considered the
effect of object mass distribution on the grasping success rate.
As shown in Fig. 13(d), they proposed a closed-loop grasping
system that prevents imbalance when grasping objects with un-
even gravity [161]. The system estimates the gravity distribution
of the object and adjusts the grasping position using visuotactile
perception.

C. Manipulation

Our human hand with precise force control and dexterity helps
accomplish many daily life tasks. The application of visuotactile
sensors allows robots better adapted to complex manipulation
tasks safely and reduce decision errors.

Peg-in-hole insertion is a scenario task in workpiece assembly,
which is difficult for novice operators. To solve this problem,
Kim et al. proposed a two-step operation strategy using a gripper
with GelSlim [70] as actuator [167], as shown in Fig. 14(a).
The strategy first uses a tactile model to estimate the contact
line between the object and the insertion hole, and later uses a
reinforcement learning model to adjust the pose of the object.
The experiment shows the method has more than 95% insertion
success rate. As shown in Fig. 14(b), visuotactile perception
technology can also be applied in the construction field, Be-
lousov et al. designed a controller based on marker deviation
and proximity vision using FingerVision [53] and applied the
controller to construction assembly [168]. Combined with Fin-
gerVision’s multimodal perception capabilities, it enables tasks
such as force following, rotation, and handover, demonstrating a
wide range of application scenarios for robots in the construction
industry.

Cable manipulation is one of the hot issues in industrial
research. Due to the soft material of cables, it is difficult to
build accurate models [169]. To solve this problem, She et al.
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Fig. 14. Application of visuotactile sensors in manipulation. (a) Peg-in-hole insertion [167]. (b) Construction assembly [168]. (c) Cable manipulation [46].
(d) USB plug manipulations [172]. (e) Fruit manipulation [173]. (f) Fingertip manipulation [174]. (g) Tool manipulation [175]. (h) Keyboard input [176].

using GelSight [46] designed a cable manipulation framework
based on LQR control and PD control. As shown in Fig. 14(c),
compared with the open-loop operation, this approach has a
faster speed and a higher success rate. To verify the feasibility
of the method, She et al. also conducted experiments on the
operation of many different types of cables with good results,
showing that the visuotactile sensors have a wide range of
applications in the field of flexible object manipulation.

Similar to cable manipulation, Sunil et al. developed a cloth-
ing manipulation framework using visual-tactile sensors, which
first uses vision to obtain the grasping position, and later uses
touch to identify and adjust the grasping position [170]. The
framework can achieve the task of folding and hanging clothes
by grasping and sliding. As shown in Fig. 14(d), Li et al. pro-
posed a tactile-based assembly technique that employs a tactile
feature-matching algorithm to achieve fine-grained manipula-
tion of fine components, e.g., USB connector insertion [171].
This method is simple and feasible, but less generalizable.
To address the generalization problem, Fu et al. proposed a
safety learning strategy with tactile feedback to achieve accurate
insertion under the premise of avoiding collision between the
robot and the environment [172]. After experiments, the method
achieved insertion in 45 different USB plug poses.

Visuotactile sensors can also be used in caring and elderly
assistance applications, Song et al. applied a visuotactile sensor
to food manipulation, using the sensor to obtain the contact force
during gripping [173]. As shown in Fig. 14(e), the difficulty of
this operation is that different foods have different hardness and
weight, and it is important not only to ensure that the fork is
inserted into the object during the operation but also to detect

whether the operation is successful. To solve this problem, Song
et al. developed a control strategy that utilized the non-linear
strain-stress relation of the elastomer to equalize the relationship
between the force range and sensitivity.

To demonstrate the advantages of visuotactile perception,
Tian et al. proposed a tactile Model Predictive Control(MPC)-
based control framework to simulate the operation of human
fingers when turning a steel ball (Fig. 14(f)) or a sieve, which
can achieve object position adjustment in the presence of visual
occlusion by rolling the object [174]. Furthermore, Suh et al.
applied visuotactile sensors to the squeegee, scribing opera-
tion [177]. To achieve precise control, a force-position hybrid
controller was designed, which uses a soft-bubble large sensing
surface to acquire the tool’s pose and tactile feedback to adjust
the contact force between the tool and the environment. This
strategy has higher stability compared to open-loop operations.
As shown in Fig. 14(g), Oller et al. modeled the Soft-Bubbles
film using a kinetic model and predicted the pose of the manip-
ulated object by the deformation of the film. This method can
manipulate many different objects such as pens, spatulas, and
sticks [175].

In addition, visuotactile sensors and deep learning algorithms
can implement many interesting tasks. As shown in Fig. 14(h),
Church et al. combined visuotactile sensors and reinforcement
learning for keyboard input [176]. Wang et al. implemented pen
flip operations using an end-to-end supervised learning channel
based on tactile exploration [178]. Dong et al. implemented
the insertion task via reinforcement learning and achieved a
success rate of over 85% in four different object insertion
experiments [179].
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D. Other Applications

As an emerging technology, visuotactile perception can also
be incorporated into other robotic components, such as arms [30]
and feet [4]. Zhang et al. proposed a smart foot that can acquire
the contact surface tilt angle and foot pose using visuotactile
sensing [31]. In addition to the robot foot, improving the tactile
perception of the robotic arm is important for improving the
safety of robot interaction. Asahina et al. proposed a robotic
arm that can perceive the contact area to improve the robot’s
perception ability during human-robot interaction [29]. To fur-
ther improve the perception and obstacle avoidance capability
of the robotic arm, Luu et al. designed a robotic arm with
controlled transparency using the PDLC(Polymer Dispersed
Liquid Crystals) film, which can switch between transparent
and opaque [180].

V. DISCUSSION AND PERSPECTIVES

The wide application of digital image sensors and recent
leaps in computer vision boosted the development of visuotac-
tile sensors, which enabled robots with high-resolution tactile
sensation by processing image signals. However, the previously
introduced prototypes are still yet to be perfect in terms of design
and signal processing. We give our insights in this section for
the future development of visuotactile sensors.

A. Design

Hardware and algorithms for visuotactile sensors are com-
plementary. The hardware level improvements on the following
aspects can fundamentally breakthrough the limitations and
expand the applications scenarios of visuotactile sensors:
� Multimodality: The information modality of current visuo-

tactile sensors is limited in visual cues, which makes them
hard to accomplish complex sensing tasks. Improvements
in multimodal perception capabilities can be realized by
designing functional sensing layers, multi-mode illumina-
tion systems, hyperspectral image sensors, and advanced
optical structures.

� Portability: Visuotactile sensors have the potential to pro-
vide detailed contact information, but the size of the sensors
limits their development. This is because the thickness of
the sensor is dominated by the focal length of the camera,
which is especially difficult to shrink for 180 degrees FOV
wide-angle lens. In the future, the application of optical
waveguides, bio-inspired compound eyes optical structure,
CMOS technology [181], and optical refraction technolo-
gies will further reduce the thickness of the visuotactile
sensor.

� Flexibility: Most of the current visuotactile sensors only
have the sensing skin part soft. Although some flexible
robotic fingers have been proposed [13], [14], flexible
fingertip sensors still need further investigation. The de-
velopment of flexible electronics, photonics, and material
science are expected to provide solutions in achieving the
overall flexibility of visuotactile sensors.

� Sensitivity: Visuotactile sensors calculate the amount of
contact force by analyzing the deformation of the sensory
skin. Since small forces are difficult to deform the sensory
skin, the detection of small forces is a major challenge
for the visuotactile sensors. In addition to small forces,
the perception of microscopic texture is also challenging.
The application of super-resolution technology and micro-
scopic imaging technology will be of great help to improve
the sensitivity of the visuotactile sensor.

B. Signal Processing

The quest in signal processing techniques on the following
topics is expected to more thoroughly exploit the information
from visuotactile sensors’ output:
� Light field control: The mainstream method in 3D re-

construction is the photometric stereo method [5], which
requires a highly precise optical path to guarantee its accu-
racy. Future development with controllable structured light
may bring a significant improvement in the reconstruction
accuracy of the visuotactile sensor. The use of ordinary
light to reconstruct the sensor surface can also drastically
promote the development of visuotactile sensors.

� Multi-sensor fusion: By combining multiple visuotactile
sensors with vision, acoustic, and even chemical sensors,
intelligent robots with human-like perception may achieve
higher-level cognitive functions and facilitate complex
manipulation tasks. Future research in compiling high-
dimensional robotic perception models is an essential step
to create the next generation of intelligent robots.

� Closed-loop control frameworks: Most existing works on
visuotactile sensors only focus on improving their percep-
tive functions. Combining visuotactile sensing technology
into closed-loop control frameworks will greatly improve
the operation ability of robots.

� Tactile reconstruction and localization: Although some
research has been conducted on depth reconstruction and
perception, the combination of visuotactile perception and
depth reconstruction algorithms is still of high technical
value in solving object reconstruction under occlusion or
low-visibility situations.

� Commercialization: Although a wide variety of visuotac-
tile sensors have been proposed, not many of them received
commercial success. Future works in hardware standard-
ization, user-friendly calibration process, unified interface
for different robotic systems (e.g., The Robot Operating
System (ROS)), and improvement in durability can accel-
erate the adoption and commercialization of visuotactile
sensors.

� Realistic simulation engine: Although the current physical
simulation engines are able to simulate and realize the
simulation of light, texture, and deformation in the process
of contact with objects, they mainly consider the reflec-
tion, brightness, and direction of light. Future inclusion of
the sensor surface material may improve the process of
sim-to-real.
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� Task-orientated optimization: Currently, visuotactile sen-
sors are mainly used in the field of object grasping for
indoor scenes. In fact, visuotactile sensors with a large area
and high resolution are advantageous for improving robot
object grasping in low-visibility environments, such as
darkness, smoke, underwater, and other extreme scenarios.
In addition to grasping, exploring the usage of visuotactile
sensors in industrial, emergency rescue, entertainment,
medical and other scenarios could be meaningful. m

� Large tactile language models: Large Language Models
(LLM) are becoming increasingly widely used in people’s
lives, and combining visuotactile perception with LLM will
further enhance the robot’s operation performance.

VI. CONCLUSION

Visuotactile perception fully combines the advantages of high
resolution in visual perception and high reliability in tactile
perception, enabling perception of not only the contact posi-
tions, but also contact forces, slip information, and object pose
through advanced signal processing algorithms. Despite some
progress in visuotactile sensor design, issues such as thickness
and hardness still limit their development. Future research can
address this by integrating emerging sensing materials and tech-
nologies into the design of sensing skin, thus expanding the range
of applications for visuotactile sensors. Regarding algorithms,
while current models are capable of providing valuable informa-
tion through signal processing, most can only accomplish one
function. In the future, the development of a general-purpose
large model capable of outputting multimodal information may
significantly amplify the functionality of visuotactile sensors.

In a word, the field of visuotactile perception contains many
unknown areas and this article reviews current technologies
for visuotactile perception from the perspective of signal pro-
cessing. We hope this review can give readers a more compre-
hensive understanding of visuotactile sensing technology from
a different angle and thus further promote signal processing
development in this field.
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