
RESEARCH ARTICLE
www.afm-journal.de

A Bio-Inspired Event-Driven Mechanoluminescent
Visuotactile Sensor for Intelligent Interactions

Kit-Wa Sou, Wang-Sing Chan, Kai-Chong Lei, Zihan Wang,* Shoujie Li, Dengfeng Peng,*
and Wenbo Ding*

Event-driven sensors are essential for real-time applications, yet the integration
of current technologies faces limitations such as high cost, complex signal
processing, and vulnerability to noise. This work introduces a bio-inspired
mechanoluminescence visuotactile sensor that enables standard
frame-based cameras to perform event-driven sensing by emitting light
only under mechanical stress, effectively acting as an event trigger. Drawing
inspiration from the biomechanics of canine teeth, the sensor utilizes
a rod-patterned array to enhance mechanoluminescent signal sensitivity
and expand the contact surface area. In addition, a machine learning-enabled
algorithm is designed to accurately analyze the interaction-triggered
mechanoluminescence signal in real-time. The sensor is integrated
into a quadruped robot’s mouth interface, demonstrating enhanced
interactive capabilities. The system successfully classifies eight interactive
activities with an average accuracy of 92.68%. Comprehensive tests validate
the sensor’s efficacy in capturing dynamic tactile signals and broadening
the application scope of robots in interaction with the environment.

1. Introduction

Tactile sensors are fundamental components in robotics and
human–machine interfaces, enabling machines to perceive and
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respond to physical interactions with their
environment. Unlike visual or auditory sen-
sors, tactile sensors provide detailed infor-
mation about pressure distribution, force,
and contact points, making them essential
for tasks like object manipulation, naviga-
tion, and providing haptic feedback. Tradi-
tional tactile sensors, including piezoresis-
tive, capacitive, and optical waveguide types
(Table S1, Supporting Information),[1] have
limitations including response time, adapt-
ability issues, and data redundancy due
to continuous sampling regardless of tac-
tile stimulus changes (Table S2, Support-
ing Information). Visuotactile sensors, such
as GelSight,[2] aim to overcome these is-
sues by combining visual and tactile sens-
ing, using RGB LEDs and frame-based
cameras to capture high-resolution sur-
face deformations on the target rubber.
However, the use of LEDs faces chal-
lenges such as thermal degradation and

optical distortions,[3] along with data redundancy from frame-
based cameras, persist.

To address these issues, integrating dynamic vision sensors
(DVS) technology with visuotactile sensors has been explored.[4]

Event-driven sensors, like DVS,[5] excel in applications requiring
fast responses due to their ability to capture data only during sig-
nificant changes, reducing redundancy and preserving essential
information. These sensors mimic the biological retina, enhanc-
ing digital analysis of brightness shifts.[6] By adopting the event-
driven approach, visuotactile sensors capture data only during
significant tactile events, reducing redundancy while enhancing
responsiveness. This integration improves temporal resolution
and latency in dynamic tactile applications.

Despite these advancements, current DVS tactile sensors still
face challenges in high costs, complex processing,[7] difficulty in
capturing slowly varying signals,[8] and susceptibility to noise.[9]

These limitations hinder their practicality and widespread adop-
tion, underscoring the need for innovative solutions that main-
tain the advantages of event-driven sensing while addressing
these issues.

A promising solution to these challenges is mechanolumines-
cence (ML), where select materials emit light under mechan-
ical stress, directly converting physical pressure into lumines-
cence, empowering frame-based cameras with event-driven vi-
sual sensing functions. The direct mechanical-to-optical con-
version mechanism of ML materials eliminates the need for
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Figure 1. Bio-inspired event-driven ML visuotactile sensor for intelligent interactions. a) Robot equipped with MAVIG as a mouth interface on a
quadruped robot as mouth interface, highlighting the robust ML elastomer and rod array structure for object interaction. b) Schematic representa-
tion of a canine’s biting mechanism, illustrating the dynamic interaction of teeth and muscles. c) Schematic of the ML rod showing stress concentration
and cross-section with the light-absorbing layer, core, and ML layer. d) Diagram of the sensing and processing mechanism. Interaction-induced lumi-
nescence of ML sensor is captured by a camera from array channels and then processes signals using an event-driven method to identify tactile events
globally and regionally. Feature extraction quantifies the ML emissions’ intensity, as well as the radial distance and direction from the centroid.

electronic sensing elements at the contact interface, simplifying
the sensor design while reducing susceptibility to environmental
interference.[10] Recent bio-inspired advances include real-time
mechanosensors and self-healing luminescent systems, demon-
strating ML’s potential in nature-inspired designs.[11] ZnS:Cu
stands out for its self-recoverable emissions without the need for
pre-excitation, providing stability and requiring lower activation
pressure.[12] This material is integrated into flexible matrices like
polydimethylsiloxane (PDMS), contributing to the development
of durable, efficient sensors that operate independently of exter-
nal power sources.[13] Moreover, the capabilities of ML materials
can be enhanced, improving their luminescence properties and

self-recoverability, making them ideal for robust and stretchable
devices.[14] These advancements facilitate the creation of wear-
able ML devices that enhance safety and offer new methods for
stress monitoring.[15] Nevertheless, challenges such as ambient
light interference and substrate durability remain, highlighting
the need for ongoing research to optimize these materials for use
in various industries.

In this study, we developed a bio-inspired mechanolumines-
cent visuotactile sensor that integrates a rod-patterned array
embedded with mechanoluminescent phosphors within a flex-
ible elastomer matrix (Figure 1a). The sensor enables standard
frame-based cameras to perform low-cost, event-driven tactile
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sensing by emitting light only under mechanical stress, elimi-
nating the need for external light sources. Inspired by the biome-
chanics of canine bites, this design incorporates a gripping mech-
anism that mimics the natural actions of a dog engaging its
teeth, translating into a manipulation mechanism that captures
pressure variations akin to natural touch (Figure 1b). Analogous
to the way canine teeth utilize their hard enamel layers to effi-
ciently transmit forces to the mechanoreceptors within the peri-
odontal ligament, the rod structure directs stress toward the ML
layer, thereby enhancing both force detection sensitivity and di-
rectional sensing capabilities.[16] (Figure 1c). An integrated light-
absorbing layer ensures efficient operation in diverse lighting
conditions. An ML-event-based processing method analyzes the
emitted light under dynamic stimulation, measuring ML emis-
sion intensity, radial distance, and centroid direction to map
applied forces across the sensor array (Figure 1d). The system
achieves an average classification accuracy of 92.68% in distin-
guishing eight distinct interaction types. By integrating this sen-
sor into a biomimetic mouth interface for quadruped robots, we
developed the mechanoluminescent autonomous visuotactile in-
teractive gripper (MAVIG), enabling the robot to interact with
objects and respond to human directives swiftly. This advance-
ment in mechanoluminescent materials and event-driven sens-
ing mechanisms holds promise for enhancing tactile sensing ca-
pabilities in robotic systems, potentially leading to more intuitive
and responsive human–machine interactions.

2. Results and Discussion

2.1. Biomimetic Mechanoluminescent Sensing Mechanism

The ML elastomer exhibits both unstretched and stretched states,
illustrating how mechanical stress triggers light emission—
the key to converting mechanical stimuli into optical signals
(Figure 2a). Mimicking the dental structure of a dog, the pat-
terned ML elastomer not only increases the contact area with ob-
jects compared to a flat surface, thus improving grip function-
ality as a mouth interface but also serves as a protective buffer,
preventing damage when handling soft objects (Figure 2b).

The sensing module utilizes a patterned ML elastomer, oper-
ating on the principle of visuotactile sensing, which captures the
ML layer (photon emitter) with a camera (photon receiver) in a
structure optimized for capture angle and resilience to ambient
light. We fabricated this patterned elastomer by doping it with
ML particles, thereby reducing the need for complex wiring and
minimizing energy consumption compared to conventional vi-
suotactile sensors (Note S1, Supporting Information). The design
integrates inorganic ML phosphors with organic elastomers, in-
corporating rod-shaped arrays that enhance sensing capabilities
by facilitating the transmission of forces along each column.[17]

However, a key challenge is selecting durable materials for the
rods, as fragile blends are prone to breakage, which could com-
promise sensor functionality.

To overcome this challenge, we focused on enhancing effi-
ciency and performance by optimizing the ML elastomer, thereby
addressing the inherent limitations associated with the brittle
nature of PDMS. The materials considered included Sorta-clear
37 (SC37), PDMS, Sorta-clear 10 (SC10), DragonSkin 30 (DS30),
and Ecoflex 30 (EF30). The diversity in mechanical behavior re-

flects the varying polymer chain structures and cross-linking
densities, impacting their ability to dissipate energy and, con-
sequently, their ML performance.[18] Hence, it is crucial to bal-
ance ML sensitivity and durability during the selection. A se-
ries of images demonstrate the stress–strain characteristics of
PDMS and SC37, revealing SC37’s superior mechanical robust-
ness (Figure 2c). The stress–strain curves of the materials with 30
weight percent (wt%) ZnS:Cu tested are presented (Figure 2d).
These results illustrate differences in mechanical properties,
such as tensile strength and elongation at break, attributed to
variations in polymer chain structures and cross-linking densi-
ties. These differences in mechanical behavior are attributed to
variations in polymer chain structures and cross-linking densi-
ties, which influence both mechanical energy dissipation and
ML emission efficiency.[19] PDMS exhibited a tensile strength
of up to 19.4 MPa but a relatively low elongation at less than
63.1% strain. In contrast, Ecoflex showed an exceptional elon-
gation exceeding 534%, though its tensile strength was lower
at only 5.4 MPa. SC37 displayed the highest tensile strength
at 23.9 MPa with an elongation of 193%. Additionally, SC37’s
load–displacement curve (Figure S1, Supporting Information)
indicates high strength and moderate elasticity. The steep ini-
tial slope suggests efficient energy transfer, crucial for ML
intensity.

Simultaneously, the ML spectra (Figure 2e) display the inten-
sities and spectral distribution of the candidate substrates when
under mechanical strain, providing insights into their energy
conversion efficiencies. For this instance, the composite films
were doped with ZnS:Cu of 50 wt%. PDMS and SC37 exhibited
superior peak intensities at 512 nm, indicating enhanced ML ef-
fects ideal for visibility and signal clarity. While PDMS demon-
strated the highest Young’s Modulus and peak intensity, its low
strain capacity of 63% limited its applicability. In contrast, SC37
emerged as the optimal substrate for advanced ML stress sens-
ing, offering the highest tensile strength, second-highest peak
intensity (71.7% of PDMS’s maximum), and a substantial elonga-
tion capacity of 196%. These results position SC37 as the prime
candidate for the substrate of the ML sensor for advanced ML
stress sensing.

Based on the selected substrate, an in-depth investigation was
conducted about the impact of ZnS:Cu wt% content on the dura-
bility and ML efficiency of the composite film (Figure 2f,g). First,
the impact on ML efficiency was studied. The composite film
samples were fabricated with SC37 incorporated with ZnS:Cu,
gradually increasing from 20% to 60%. The peak intensities in-
crease with the additive content from 20 to 40 wt%. Once the con-
tent of ZnS:Cu particles reaches 50 wt%, the luminosity increases
substantially, reaching a maximum value at 60 wt%. The inten-
sity ratios reveal 60 wt% as the reference (100%), with 50 wt%
at 62.24%, 40 wt% at 21.67%, 30 wt% at 17.83%, and 20 wt%
at 5.13%. These results suggest that increased ZnS:Cu content
leads to higher peak intensities. Further investigation of the 60
wt% demonstrates a linear relationship between applied force (0–
16 N) and light emission intensity (Figure 2h), with an R2 value of
0.97, which is in high agreement with previous reports.[20] This
result again confirms the feasibility of using SC37 for precise
force-sensing applications. SC37 was selected as the substrate for
the ML sensor because of its superior mechanical properties and
luminosity.
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Figure 2. Design and material optimization. a) Schematic of the ML phenomenon: unstretched versus stretched states of ML elastomer. b) Diagram
of the patterned ML elastomer of a 5 × 5 array structure emitting light to the bottom under mechanical forces. c) Sequence images for comparing the
stretchability of PDMS and SC37 elastomers with 30 wt% ZnS:Cu ML phosphor. Scale bar, 4 cm. d) Stress–strain curves for various elastomers (SC37,
PDMS, SC10, DS30, and EF30). e) ML intensity spectra for the elastomers under equal force. f) Stress–strain curve of varying doping concentrations
in SC37 elastomer. g) Effect of different doping concentrations on luminous intensity. h) Force sensitivity of SC37 with 50 wt% phosphor. a.u., arbitrary
units.

Adv. Funct. Mater. 2024, 2420872 © 2025 Wiley-VCH GmbH2420872 (4 of 12)

 16163028, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/adfm

.202420872 by Shenzhen U
niversity, W

iley O
nline L

ibrary on [02/01/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://www.advancedsciencenews.com
http://www.afm-journal.de


www.advancedsciencenews.com www.afm-journal.de

Figure 3. Improving ML efficiency via structural optimization and simulations. a) Schematic illustration of the contraction mechanism and stress dis-
tribution in the ML elastomer during object interaction. b) Schematic contrasting a lateral sliding force on a single rod, resulting in shear deformation,
with a combined vertical pressing and subsequent horizontal sliding force on a plane, detailing the respective displacement areas. c) Displacement
profiles for varying forces (1–16 N) of figure b, illustrating the material’s deformation response. d) Total ML intensity of the ML elastomer with heights
ranging from 6–12 mm. e) Total ML intensity of the ML elastomer with rod diameters ranging from 3–6 mm. f) Image of 5 × 5 array channel of ML
elastomers: the top image shows the array without a light-absorbing layer, while the bottom image shows the array with a light-absorbing layer. Scale
bar, 5 mm. g) Spectral intensity comparison between two types of light-absorbing thin film. h) Stability test showing the total ML intensity over 2000
cycles of integrated ML sensor. Points represent mean values, and error bar represents SD for 100 test samples.

2.2. Improving ML Sensitivity via Structural Simulations and
Optimization

We further investigate the structural refinement of the ML elas-
tomer, which incorporates a cylindrical rod-patterned architec-
ture inspired by the biomechanics of canines’ bites (Figure 3a;
Movie S1, Supporting Information). This biomimetic design is
inspired by the stress localization observed in canine interactions
with objects. In natural canine interactions, stress is strategi-
cally localized in areas like the enamel and periodontal ligament,

which are both adept at handling and transmitting mechanical
forces. This process involves the transmission of stress from the
enamel to the highly sensitive periodontal ligament, which is rich
in nociceptors and mechanoreceptors that detect pressure.[21]

By replicating this pattern, the ML elastomers are structured
to concentrate stress at key points. Computational simulations
of this design under lateral forces reveal significant stress con-
centrations at the rod bases, highlighted in warm colors on the
heatmap to indicate areas of maximum ML activation potential.
This confirms the design’s effectiveness in force transduction.
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Additionally, whereas a cylindrical object pressed against a rigid
surface typically contacts along a single line, our compliant, rod-
patterned design increases contact to multiple lines across each
rod, further enhanced by the pressure exerted during clamp-
ing (Figure S2, Supporting Information). The structural elasticity
substantially increases contact points, thus expanding the contact
surface area and enhancing grip stability, allowing the material to
wrap around and grasp objects more effectively.

To assess the impact of rod structural changes on ML sensi-
tivity, the mechanical response of situation-specific elastomers to
lateral forces is analyzed (Figure 3b). This comparison highlights
the contrasting deformations: a lateral sliding force against a sin-
gle rod resulting in localized shear deformation and a combined
pressing and sliding force on a planar surface demonstrating dis-
tributed deformation. Finite-element analysis was performed to
simulate these force applications (Figure 3c; Note S2, Supporting
Information). The displacement analysis spans the x-coordinate
(referred to as the “location”) along the base from 0 to 8 mm, with
the rod (8 mm in height, 4 mm in diameter) positioned between 2
and 6 mm. Results showed that displacement from sliding is sig-
nificantly higher than from pressing under the same force levels.
At higher forces, such as 16 N, displacement sharply peaks, high-
lighting the material’s increased sensitivity to sliding. Elastomers
in a rod array structure experience an average displacement 21.84
times greater under sliding than pressing on a flat surface, lower-
ing the ML activation threshold. The sliding-to-pressing displace-
ment ratio varied with applied force, ranging from 29.73 at 1 N
to 16.94 at 16 N (Figure S3, Supporting Information), illustrating
the changing sensitivity with force magnitude.

Further analysis of cylindrical rods’ geometric dimensions re-
veals their influence on ML intensity. The emission levels, stud-
ied across rod heights from 6 to 12 mm at 3 mm intervals
(Figures 3d and S4a, Supporting Information), showed a linear
increase in luminescence with height; the shortest at 3 mm emit-
ted an intensity of 0.7, while the tallest at 12 mm reached 1.0.
However, 12 mm rods exhibited a higher tendency to fracture
under stress compared to 9 mm rods. Considering this and the
spatial constraints of the application as quadruped robots’ mouth
interface, the optimal rod height was set at 9 mm. Addition-
ally, we investigated the effect of thickness on the rod from 3 to
6 mm. The result shows an increase in rod thickness correlated
with higher luminescence (Figures 3e and S4b, Supporting In-
formation). This increase can be attributed to the larger surface
area available for ML emission despite the theoretical decrease in
stress concentration. The sensitivity of the rod, which is a func-
tion of the induced strain per unit force, depends on the rod’s ge-
ometric dimensions and material properties, as discussed in the
Experimental Section. However, larger diameters reduced inter-
rod spacing, potentially limiting individual rod movement. Con-
sidering the 36 mm sensor width of the quadruped robot, a 5 mm
rod diameter was deemed optimal, enabling a 5 × 5 rod array con-
figuration that optimizes ML intensity and structural integrity
within this spatial constraint. This arrangement, covering a 36
× 36 mm2 area, maximizes resolution and utilizes the available
sensing surface efficiently.

To enhance the clarity and accuracy of ML visuotactile sensor
readings under varied lighting conditions, a light-absorbing layer
was added (Figures 3f and S5, Supporting Information). This de-
sign effectively shields the photon generation process from ex-

ternal light influences, ensuring that only photons from the ML
effect are captured by the sensor’s camera, thus maintaining the
robustness and functionality of the sensor. A comparative spec-
tral analysis of Silc pig silicone pigments and UVO colorant was
performed under indoor daylight lamps (50 W, 1.5 m above), con-
firming exceptional light absorption capabilities for both mate-
rials (Figures 3g and S6, Supporting Information). They block
99.9% of light across the spectrum from 400 to 850 nm, with Silc
pig providing enhanced protection in the 492 to 577 nm range,
crucial for protecting the green luminescence of the ZnS:Cu ML
effect. This strategic inclusion of materials minimizes ambient
light interference. These settings were integrated into the ML
sensor design, and a repeatability test was conducted (Figure 3h).
The test showed that the difference in luminous intensity was
with an average of 6.92% under dynamic mechanical loads over
2000 cycles spanning 3 h and 20 min, verifying its durability. This
integration of optimized material composition and bio-inspired
structural design enables several fundamental advantages in our
sensor design. The inherent event-driven sensing capability is
achieved through direct mechanical-to-optical conversion, effec-
tively eliminating continuous power consumption in operation.
The rod-patterned structure enhances ML emission efficiency
through optimized stress transfer pathways, while the tri-layer
architecture provides robust operation under ambient lighting
conditions. These design features work synergistically to create
a sensor system that combines high sensitivity with operational
stability and energy efficiency.

2.3. Signal Processing via Dynamic Luminescent Localization
Mapper

We designed a specialized algorithm, dynamic luminescent lo-
calization mapper (DLLM), leveraging ML’s property of emitting
light only under dynamic mechanical stimulation, taking advan-
tage of its stable dark background. Unlike conventional visuotac-
tile sensors requiring internal LED illumination, the ML visuo-
tactile sensor only needs to observe the unique phenomenon of
the ML array in the dark interior. When there is no interaction,
the camera records a dark scene and refrains from further pro-
cessing, akin to the absence of events in a DVS system. During
the interaction, light signals from each rod converge to a corre-
sponding circular area at the elastomer’s base, identified by the
rod number. Similar to visuotactile sensing systems that consider
marker points as taxels,[22] each circular area in the ML array
functions as a visuotactile sensor taxel. However, unlike tradi-
tional visuotactile sensing systems, where taxels rely on displace-
ment for tactile perception, each rod in the ML array corresponds
to a fixed circular area in the frame. This fixed correspondence
simplifies tracking and reduces computational requirements.

DLLM processes mechanical actions to compute and com-
pare total and local ML intensities against preset thresholds
(Figure 4a). If the total intensity exceeds this threshold, the algo-
rithm further analyzes each region’s intensity. Regions surpass-
ing local thresholds are evaluated for the centroid of light dis-
tribution to identify interaction locations, while regions below
the threshold are discarded. DLLM enhances precision and ro-
bustness by integrating spatial and temporal data. It utilizes a
mathematical approach where the total luminance Hn(t) of each
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Figure 4. Proposed algorithm and interaction classification. a) Schematic of the dynamic luminescent localization mapper (DLLM) for ML visuotactile
sensor. Input data from object interactions are processed to compute total intensity. Regions where intensity surpasses a predefined threshold are
identified, and further analysis is performed to compute the centroid of the light distribution within these regions. b) Calibration and region mapping.
c) Visualization of interaction intensity across a rod array. The camera view captures the interaction, which is then represented in a heatmap to show
the intensity distribution. Higher intensity values indicate stronger interactions. d) Region gradient heatmap of interaction intensity, the radial distance,
and the direction of the centroid of the ML distribution for two specific regions (#2 and #25) within the array. e) Interaction classification workflow. One
of eight predefined actions’ data is captured after the DLLM detects an effective frame. Features are extracted from each taxel and fed into the CNN
algorithm for classification. f) Time series data for three different actions (blue line: push action, green line: clockwise rotation, orange line: sliding right
action) in the time domain. Different channels (Channels 1–3) are compared to highlight interaction patterns.
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taxel An is calculated using a double integral that accounts for the
spatial distribution of light intensity across the sensor area. This
method allows for precise assessment of changes, enhancing de-
tection accuracy. The algorithm employs a dual-threshold system
to minimize false positives and ensure reliable change detection.
Global and local thresholds 𝛼 × D (where 𝛼 is the scaling factor
and D is the global average frame intensity) and 𝛽 × Bn (where 𝛽

is the local scaling factor and Bn is the average intensity for each
taxel’s circular area), respectively, are used to filter out minor or
irrelevant changes effectively. Such thresholds provide stability
by maintaining consistent output amidst fluctuating data inputs.
Additionally, the system’s recovery from disruptions is expedited
by its real-time processing capability and continuous adjustment
of thresholds based on recent data inputs, ensuring rapid recali-
bration and resumption of normal operations. For calibration, a
lamp is positioned above the ML sensing array, capturing a frame
which is then converted to grayscale (Figure 4b). Image noise is
minimized via Gaussian blur, and then the Hough circle algo-
rithm identifies and organizes circular outlines by their centers
and radii, creating a binarized mask. This mask stores the hard-
ware calibration parameters, which remain valid in unchanged
settings. Upon activation, the sensor uses these parameters to
accurately locate taxel areas.

During operation, if the total intensity of a frame does not
satisfy the global event-driven threshold, the frame is discarded.
This is analogous to DVS’s ability to ignore scenes with mini-
mal overall change, reducing data processing. Additionally, if the
intensity of any circular area meets the local event-driven thresh-
old, the frame is considered effectively triggered (Figure 4c). All
effective frames undergo further feature extraction, starting with
calculating the weighted centroid coordinates for each circular
area. Based on the center coordinates and weighted centroids,
an offset vector is calculated and converted into polar coordi-
nates, recording the vector’s length and polar angle as the ra-
dial distance and direction of the centroid of the ML distribution
(Figure 4d). Systematic testing demonstrates robust directional
force detection with an average angular measurement error of
±3.41° within 0° to 90° range (Figure S7, Supporting Informa-
tion). The radial symmetry of our rod-patterned architecture en-
ables the extension of this sensing capability to the complete 360°

range. Along with the total intensity of the circular area, these pa-
rameters serve as the feature values of the rod, characterizing its
sensory data. Detailed descriptions of DLLM are provided in Note
S3 and demonstrated in Movie S2, Supporting Information.

The calibration and operational efficacy of DLLM validate the
effectiveness of the ML visuotactile sensor as MAVIG in real-
world applications (Figure 4e). The system initiates with an in-
teraction, such as a gripper holding an object, and streams dy-
namic stress distribution data. Key features like the radial dis-
tance and direction of the centroid of the ML distribution are
extracted and classified using a convolutional neural network
(CNN). A practical demonstration involved using a screwdriver,
with training data from ten individuals performing eight distinct
actions, resulting in 100 samples per action and a training-to-
testing ratio of 8:2 (Note S4, Supporting Information). This setup
highlights the system’s ability to accurately interpret human in-
puts and its adaptability in interactive applications. Further anal-
ysis of three actions—“Push,” “Rotation clockwise,” and “Sliding
right”—using time-series data emphasizes the system’s sensitiv-

ity and precision (Figure 4f). Each action’s ML intensity and an-
gle were evaluated across two consecutive samples. The first row
aggregates intensity data from 25 channels, with “Push” show-
ing the highest intensity due to direct force. Subsequent rows
depict the magnitude and angle for specific channels, illustrat-
ing stress diversity and direction. For example, “Push” shows a
brief consistent angle, while “Sliding right” maintains a constant
angle longer. These variations offer detailed physical interpreta-
tions, enriching the dataset and improving the machine learning
model’s predictive accuracy and adaptability to different physical
interactions in real-world applications.

Following the detailed analysis of individual actions, the
MAVIG system aggregates radial distance and angle of the cen-
troid of the ML distribution data from all 25 channels into 50
time-series datasets, which are then processed by a CNN to clas-
sify the actions observed (Figure S8, Supporting Information).
This combination of data types is selected based on its demon-
strated efficacy in enhancing action recognition, effectively cap-
turing the spatial diversity and directional nuances necessary for
accurate classification. The performance is substantiated through
validation tests, which show that the system achieves an average
classification accuracy of 92.68% with a validation loss of 27.53%
(Figure S9, Supporting Information).

2.4. Integration as an Intelligent Mouth Interface

The MAVIG system was integrated as a mouth interface on a
quadruped robot to enhance its environmental interactions. Such
an interface reduces mechanical complexity and weight com-
pared to alternatives like a third arm, thus enhancing balance, en-
ergy efficiency, and spatial efficiency in confined spaces (Note S5,
Supporting Information). The hardware incorporates a smaller
servo motor and the sensor shell to enhance the system’s robust-
ness and functionality (Figure 5a). By rapidly processing tactile
inputs, the robot can perform tasks such as following a desig-
nated path when guided by touch, manipulating objects, and re-
sponding to human commands delivered through specific inter-
action patterns. For instance, when a user slides an object across
the mouth interface in a certain direction, the robot interprets
this as a command to move forward or turn, enabling intuitive
control without external devices and contributing to improved
performance in interactive tasks.

We developed an interactive movement system, as outlined in
the flowchart (Figure 5b), that enables the robot to perceive and
respond to its environment autonomously. The ML visuotactile
sensing unit, comprising a camera and ML sensor, captures de-
tailed sensory information during physical interactions. This sen-
sory data is transmitted to the processor, which houses the con-
troller that manages the robot’s actions, such as moving forward,
backward, and rotating. The DLLM processes the sensory data
rapidly to identify ML tactile features. The interaction recogni-
tion unit then classifies these features into interaction categories,
which determine motion commands. These commands are exe-
cuted by the quadruped robot, enabling it to further interact with
the environment.

A specialized task demonstrates the robot navigating a des-
ignated track under human guidance through this interactive
system (Figure 5c; Movie S3, Supporting Information). In this
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Figure 5. Integration of the MAVIG into a quadruped robot as a mouth interface for interactive movement demonstration. a) Photograph of a quadruped
robot equipped with the MAVIG mouth interface, showcasing the processor and mouth interface for interaction capabilities. b) Schematic of the interac-
tive movement system. c) The path of navigation task using the interactive movement system. d) Time-series diagram displays the responses to external
interactions captured by the MAVIG system. The plot shows ML intensity over time across different regions of the sensor array, highlighting detected
interactions in inlets, including sliding and rotations (clockwise and counterclockwise). These responses are processed and classified into interaction
types, triggering the corresponding movement commands to the quadruped robot.

task, the robot successfully followed tactile cues provided by the
user through the mouth interface, showcasing its ability to nav-
igate complex environments based on touch interactions. The
processor analyzed the event-driven signal using DLLM and a
pre-trained CNN, which simplifies the classification system from
eight to four categories to enhance computational efficiency and
accuracy, achieving an overall accuracy of 97.37%. Validation
tests revealed that the mouth interface had a response time of
less than 0.7 s. The time-series visualization of ML responses
effectively correlates external interactions with the MAVIG sys-
tem (Figure 5d), showcasing the interactive movement system
allows the robot to explore and respond to physical interactions
autonomously.

3. Conclusion

We have developed an event-driven ML visuotactile sensor utiliz-
ing rod-pattern SC37 elastomers embedded with ZnS:Cu, chosen
for its superior luminescent efficiency and mechanical robust-
ness. By adopting ML for visuotactile sensing, we replaced RGB
LEDs, effectively addressing issues related to power consump-
tion, thermal degradation, and optical distortions. We designed
a rod-patterned architecture inspired by the biomechanics of ca-
nine bites to optimize tactile sensitivity and enhance interaction
capabilities.

Filtering techniques eliminate ambient light sensitivity, ensur-
ing consistent sensor performance across various lighting condi-
tions. The integration of the DLLM further refines the processing
flow, enhancing feature extraction and system efficacy in real-
world applications. This method empowers traditional cameras
with event-driven sensing, avoiding the high costs and complex-
ity of DVS.

The ML visuotactile sensor system, demonstrated here as part
of the mouth interface for quadruped robots, significantly en-
hances these robots’ environmental interaction capabilities. Al-
though the system is calibrated for quadruped robots, adaptations
can be made to suit scenarios with atypical designs or specific
functional requirements. The robust nature of these ML sensors
not only prolongs their useful life but also augments the system’s
energy efficiency, promoting a sustainable approach. Notwith-
standing the remaining limitations and future work, demonstrat-
ing the effectiveness of ML visuotactile sensors compared with
traditional RGB LED-based systems represents a milestone in
tactile sensing and robotics.

Future research will aim to refine these integrations and ex-
tend their applications, potentially broadening the scope of sen-
sory interfaces. This includes developing irregularly shaped or
arranged ML rods to accommodate diverse interaction patterns.
It is hoped that continued innovation in ML sensor technology
and algorithm optimization will lead to more nuanced and effec-
tive interactions.

Adv. Funct. Mater. 2024, 2420872 © 2025 Wiley-VCH GmbH2420872 (9 of 12)
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4. Experimental Section
Material and Characterization: Among the various ML materi-

als reported,[23] the most notable include asymmetric piezoelec-
tric compounds such as strontium aluminate (SrAl2O4:Eu2+) and
ZnS:Cu/Mn2+.[24] Strontium aluminate required pre-irradiation to ac-
tivate ML,[25] while ZnS:Cu/Mn2+ exhibited self-recoverable emissions
without the need for pre-excitation, providing stability and requiring
lower activation pressure.[12] This property rendered ZnS:Cu/Mn2+ suit-
able for this application, and ZnS:Cu recorded a high durability and
brightness.[12a]

Mechanical stimulation of ZnS:Cu particles induced plastic deforma-
tion, resulting in the bending of energy bands within the material’s elec-
tronic structure. This deformation facilitated the quantum tunneling of
electrons from shallow donor states to the conduction band. The sub-
sequent recombination of these excited electrons with holes in the va-
lence band led to the emission of photons in the green and blue spec-
tral regions. This ML process effectively transduced mechanical energy
into visible light, demonstrating the intricate relationship between struc-
tural perturbations and electronic transitions in doped semiconductor
materials.[26]

ML phosphors ZnS:Cu were purchased from Shanghai Keyan Opto-
electronics Technology. The phosphor size (about an average of 30 μm)
and morphology were characterized using a scanning electron microscope
(Hitachi, SU8010) (Figure S8a,b, Supporting Information). X-ray powder
diffraction was performed using an X-ray powder diffractometer (D8 Ad-
vance) (Figure S10c–e, Supporting Information). For the elastomer, PDMS
(Dowsil 140) was acquired from Dow Corning. Sorta-clear 37 (SC37),
Sorta-clear 10 (SC10), DragonSkin30 (DS30), and Ecoflex 30 (EF30), as
well as Silc pig silicone color pigment, were purchased from Smooth-on
Inc.

Preparation of Material Performance Evaluation: To prepare the poly-
mer matrices, a 10:1 mass ratio of PDMS precursor and curing agent was
combined in a vessel. Concurrently, ZnS:Cu ML phosphors were mixed
with PDMS at a 1:1 ratio using a Planetary Centrifugal Mixer (THINKY
MIXER ARE-310) at 2000 rpm for 90 s at ambient temperature. This pro-
cedure was repeated for four silicone elastomer types: SC37, SC10, DS30,
and EF30, each mixing with a 1:1 mass ratio of parts A and B. Following
mixing, the blend was degassed under vacuum for 10 min to eliminate air
bubbles. The blend was then cast into molds tailored for specific tests.
For the sample for tension testing, the homogenized phosphor-elastomer
blend was then cast onto an ISO37 Type 1 stand mold. The fabrication pro-
cess for this system is documented (Figure S11, Supporting Information).
The resulting elastomer was thermally cured at 60 °C for 1 h and allowed to
cool to room temperature. Additionally, elastomers with varied phosphor
concentrations were prepared to investigate the effects of differing elas-
tomer substrates on the mechanical properties. For the sample for ML
Measurement, the blend was evenly distributed onto a plastic sheet using
a scraper to ensure uniform thickness and similarly cured. The resulting
film was thermally cured at 60 °C for 1 h and allowed to cool to room
temperature. This process yielded ML films with thicknesses of ≈300 μm.
Additionally, films with varied phosphor concentrations were prepared to
investigate the effects of differing elastomer substrates on the mechano-
luminescent properties.

Tension Testing of ML Elastomer: ML elastomers were prepared into a
dumbbell shape (135 mm × 25 mm) with a test length of 25 mm, which
is in accordance with the ISO37 Type 1 stand mold requirement. The
stress–strain curves of the ML elastomer samples were retrieved using the
universal testing machine (micro-force tensiometer, Instron, Microtester
5948).

Luminous Intensity Measurements of ML Film: The ML films were
placed between two ends of a fixer of a Prtronic FT2000 Flexible Electron-
ics Tester (Shanghai Mifang Electronic Technology Co., Ltd) (Figure S12,
Supporting Information). The stretching was generated with one of the
ends shifting forward and backward 30 mm repeatedly on a rail at a speed
of 40 mm s−1. ML was collected via an optical fiber and transmitted to a
spectrometer (Ocean Optics QE65 Pro) for recording. The spectrometer
integration time was set to 2.0 s.

Preparation of Rod Array ML Sensor: The fabrication process for this
system is documented (Figure S13, Supporting Information). During the
fabrication of a 5 × 5 rod array ML sensor, elastomer molding was ex-
ploited. The mold consists of five 3D-printed parts: the internal fork and
filters, the external fork and filters, and a base mold. The spacing between
rods was critically designed to accommodate the elastic deformation at
the rod base during lateral force application, ensuring reliable mechanical
response and ML signal generation. The external fork and filter shaped the
external layer with spaces for the middle layer. Similarly, the internal coun-
terparts allow room for the core layer, shaping the elastomer into rod form.
The construction of the ML sensor included the following: First, the light-
absorbing layer (composed of SC37 with 2 wt% Silc pig black pigment)
was transferred onto the base mold and vacuumed at 30 kPa to remove
bubbles. The external fork was placed onto the mold, initiating the external
layer’s inner structure, with the filter securing the fork. Upon solidification,
the external fork and filter were detached from the base mold while keeping
the light-absorbing layer in its position. The ML layer was then poured on
top of the external layer and vacuumed. The internal fork and filter shaped
the ML layer and were removed after hardening. Subsequently, the core
layer was added, with existing slots providing shape. Following the solidi-
fication of the core layer, the 5 × 5 rod array ML sensor was demolded and
ready for system integration.

Force Sensitivity of the ML Rod: This model analyzed the deformation
of the ML rod under lateral force and the resultant strain at its base. When
a lateral force F is applied to the tip of a rod with a fixed base, it creates
a bending moment M = F × L at the base. The rod’s cross-section has
a moment of inertia I = 𝜋r4/4 , where r is the radius. The maximum
bending stress at the surface (y = r) is given by

𝜎max =
4FL
𝜋r3

(1)

this stress induces an axial strain which is given by

𝜖max =
𝜎max

E
= 4FL

𝜋r3E
(2)

where E is the Young’s modulus.
The sensitivity S of the rod, defined as the strain per unit force, is

S = d𝜖
dF

= 4L
𝜋r3E

(3)

Optimization of ML Rod Dimensions: A UR5 robotic arm with a custom
3D printed probe (Tip has a contact area of 5 cm2) was attached at the
terminal. The test sample of an ML sensor was secured onto the testbed
(Movie S2, Supporting Information), performing just the basic sensing el-
ements. It contained a cover, acrylic glass, an ML sensor, a sensor shell,
and a camera. A light-blocking cloth covered the setup to prevent external
light interference, ensuring the reliability of ML data under controlled light-
ing conditions. The chosen camera component was the DeHong IMX415,
a 30 frames per second (FPS) color CMOS. The frame rate of the detector
was set to 30 FPS, and the later chosen camera remained the same. The
arm swiped over the ML rods, moving at a constant speed of 200 mm s−1

(Figure S14, Supporting Information), triggering ML emissions by varying
the rods’ diameter and height to optimize sensor responses.

Light-Absorbing Ability Test: Silc pig silicone pigments and UVO col-
orant were each incorporated at 2 wt% into SC37 to create a thin film of
≈300 μm thickness. The mixture was processed in a spin machine and
then subjected to a light test using indoor daylight lamps (50 W, 1.5 m
above the sample). Light spectra were captured using an optical fiber and
analyzed with a spectrometer (Ocean Optics QE65 Pro), which had an in-
tegration time set at 2.0 s. The performance difference is defined as

Ix − ISilc Pig

ISilc Pig
× 100%, (4)
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 16163028, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/adfm

.202420872 by Shenzhen U
niversity, W

iley O
nline L

ibrary on [02/01/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://www.advancedsciencenews.com
http://www.afm-journal.de


www.advancedsciencenews.com www.afm-journal.de

where Ix is the spectral intensity of the comparison material under evalu-
ation, and ISilc Pig is the spectral intensity of Silc pig.

Repeatability Test: With the UR5 robot moving at a constant speed
of 200 mm s−1, the probe repeatedly swiped the ML sensor with a light-
absorbing layer. The ML elastomer sample was measured for 2000 cycles,
6.0 s for one cycle, spanning 3 h and 20 min.

Assembly of MAVIG System: The MAVIG system’s design includes a
Gripper (elements 1–5) and a sensing module (elements 3–8) housed
within a 170 mm × 120 mm × 120 mm unit with a 36 mm × 36 mm sens-
ing surface (Figure S15, Supporting Information). The gripping system,
featuring a protective layer and a claw, maximizes friction and accommo-
dates various object shapes. The sensing module utilizes the principle of
visuotactile sensing, which is achieved by capturing the ML layer (photon
emitter) with a camera (photon receiver) within a structure that optimizes
the capture angle and is resilient to ambient light. The ML sensor was
secured between the protective layer and a plane acrylic lens, connected
using shared M3 screw holes. For actuation, a 60 N m−1 torque digital
servo motor (Hiwonder LD-260MG, 65 mm × 30 mm × 61 mm) was at-
tached tightly to the sensor foundation. The 3D resin-printed claw features
an inner flat soft layer (Compat 45, measuring 36 mm × 36 mm) that grips
objects securely. Activation occurs through the rotation of the motor shaft,
which presses the object between the claw’s inner surface and the sens-
ing layer, enabling effective trapping and sensing of the object’s charac-
teristics. Two types of connectors were used: one affixed to the base of
the gripping system for attaching the MAVIG system to a robotic arm and
another for attaching to a quadruped robot. The chosen camera compo-
nent was DeHong IMX415, which was set to a frame rate of 30 FPS in this
work, ensuring adequate ML emission capture while maintaining real-time
processing and preventing data transmission bottlenecks. Notably, the ab-
sence of an LED circuit in the design minimizes heat effects, allowing the
MAVIG system to operate without temperature-related disruptions during
extended use.

Prototype Applications: For the demonstration, the MAVIG system was
integrated as a mouth interface on a quadruped robot (UnitreeRobotics,
GO1) using a custom connector (Figure 5a). The robot’s size is 645 mm
× 280 mm × 400 mm. It was equipped with a processor (Intel NUC 12
Pro mini, i7 core, Iris Xe graphics, dimensions: 117 mm × 112 mm ×
56 mm) and a dual-output power source (22 V, split into 19 V for the
processor and 7 V for the digital servo motor). The processor connects
to the quadruped robot and the MAVIG (the motor and camera) through
USB 3.1. To optimize integration with the quadruped robot, the dimen-
sions of MAVIG were adjusted by selecting a 35 N m−1 digital servo
motor (DSSERVO, RDS3235, dimensions: 40 mm × 20 mm × 40 mm)
and reducing the height of the sensor shell from 65 to 50 mm, ensuring
a compact fit and enhanced functionality. The processor-processed data
from MAVIG through DLLM can utilize pre-trained CNN to interpret in-
teraction patterns for fast response. The process was implemented on
the processor using Python. The classification system was streamlined
from eight to four categories to optimize computational efficiency and
accuracy. “Sliding right” and “Sliding left” were merged into “Sliding”;
“Pull,” “Push,” “Oblique pull,” and “Oblique push” were combined into
“Push/Pull.” The categories for “Rotation clockwise” and “Rotation anti-
clockwise” were maintained separately. The overall accuracy was 97.37%
(Figure S18, Supporting Information). After recognizing interactions, the
processor translates these into executable commands for the quadruped
robot.

Interaction-Based Movement: Interaction patterns “Sliding,” “Rotation
clockwise,” and “Rotation counterclockwise” corresponded to the forward,
turning right, and turning left functions, respectively, and the interaction
pattern “Push/Pull” controlled switching between biting and releasing.
The quadruped robot control was achieved using the processor. During op-
eration, interaction pattern data were first transmitted to the processor. Af-
ter the data were classified and processed, the corresponding action com-
mand was sent to the robot. The time-series trajectories of the quadruped
robot controlled by interaction with an object interaction from a person
demonstrated the system’s responsiveness to autonomy in navigating and
exploring.

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.
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Notes 

Note S1. Power consumption comparison of visuotactile sensors 

To quantify the amount of power saved by incorporating the ML phosphors ZnS:Cu, 

we designed an experiment to investigate the power consumption of other visuotactile 

sensors. Consequently, we can compare the power consumption of different visuotactile 

sensors. The experiment utilizes a USB power meter (ZHAOXIN U65-B voltage and 

current tester), which is inserted in between a visuotactile sensor (connected to the 

receptacle of the USB power meter) and the computer (with the USB power meter plugged 

into the computer). Subsequently, the USB power meter measures the power being drawn 

from the connected sensor, with the sensor adjusted to its maximum capture resolution for 

consistency. 

Our comparative analysis focused on the commercial DIGIT sensor, which represents 

conventional visuotactile sensor architecture. DIGIT requires multiple electrical 

components including RGB LED arrays (4-6 LEDs), LED driver circuits, and power 

distribution PCB, necessitating 12-18 distinct wiring points for operation. In contrast, our 

ML-based design eliminates these components entirely, requiring only USB connectivity 

for the camera module. 

We compared the energy consumption of the commercial DIGIT sensor, which uses 

LEDs, with our ML-based sensing system (Figure S14). Replacing DIGIT’s LEDs with 

ML phosphors and removing the LED management PCB could reduce its energy 

consumption from 1.222 W to just the camera’s 120 mW, potentially saving 90.18% in 

energy. Additionally, our system, using a DeHong IMX415 camera module, consumes 

0.542 W, substantiating a 55.65% energy reduction compared to DIGIT. These findings 

underscore the efficiency of ML phosphors in lowering power consumption in sensor 

technology. 
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Note S2. Simulation setting  

The simulation involved a rod elastomer (Sliding) and a plane elastomer with a steel 

object above (Pressing), both modeled from PDMS, featuring Young’s modulus of 550 

kPa, a Poisson’s ratio of 0.49, and a density of 970 kg m⁻³. Each elastomer measured 10 

mm  ×  10 mm  ×  2 mm with a fixed base. The rod had an additional cylindrical part, 8 mm 

in height and 4 mm in diameter. The plane elastomer was topped by a steel block sized 2 

mm  ×  2 mm  ×  4 mm. Lateral forces were applied 2 mm above the contact surface on the 

rod and the steel block, simulating realistic cutting force application, with gravity 

considered in the calculations. Simulation software COMSOL Multiphysics 6.0 was 

exploited here. Although PDMS was chosen due to its well-characterized properties in the 

literature, experimental validation confirms that SC37 exhibits similar deformation 

patterns, with magnitude differences proportional to the differences in their Young’s 

modulus. 
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Note S3. Workflow of DLLM 

The initial phase of DLLM involves the process of calibration and threshold 

initialization. The calibration process includes several steps. Firstly, a 40W handheld white 

light LED lamp is placed above the ML sensor (Using an ML sensor of identical 

dimensions but lacking a light-absorbing layer), and a frame (350 × 350 × 3 pixels) is 

recorded from the sensor camera. This frame is converted to a grayscale image. Image 

noise is reduced, and detail levels are lowered through Gaussian blur processing. Then, 

using the Hough Circle algorithm, the center coordinates 𝑐!(𝑥, 𝑦) and the corresponding 

radii 𝑟! of each circular outline are pinpointed and sorted by the coordinates of the circle 

centers from smallest to largest. The center coordinates and the average radius are given 

by:  

𝐶 = {𝑐!(𝑥, 𝑦)}!"#,%,…,%'																																																		(1) 

𝑅/ =
(∑  !

("# 𝑟()
𝑛 																																																																(2) 

By using (1) and (2), a binarized mask is obtained, thus storing the hardware calibration 

parameters as	 𝑃 = (𝐶, 𝑅/) ∈ ℝ!)#. It is important to note that the hardware calibration 

parameters 𝑃 remain valid as long as the ML sensor maintains its original size and is not 

disassembled. Once the ML sensor initiates, it only needs to load the hardware calibration 

parameters 𝑃  to find the frame area 𝐴!  corresponding to each taxel. For threshold 

initialization, video frames from 1.0 s preceding the captured frames are used for 

initializing event-driven parameters. The global average intensity of the frame is given by: 

𝐷 =9  
*+,

-"#

𝑀(𝑡)
𝐹𝑃𝑆 																																																													(3) 

Then it is calculated, where the total brightness of each frame 𝑀(𝑡) is given by: 

𝑀(𝑡) = 9  
.'/

0"#

9 
.'/

1"#

𝐼(𝑥, 𝑦)																																																					(4) 

Similarly, the average intensity for each circular area is calculated as a local threshold:  
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𝐵! =9 
*+,

-"#

𝐻!(𝑡)
𝐹𝑃𝑆 																																																									(5) 

𝐻!(𝑡) denotes  asthe total measurement of one of the circular areas and is given by: 

𝐻!(𝑡) = &  
"!
𝐼(𝑥, 𝑦)𝑑𝐴 = .  

#$

%&'

.  
(

)&'

𝐼/𝑐!,+ + 𝜌 cos(𝜙) , 𝑐!,, + 𝜌 sin(𝜙)9															(6) 

During the operation, if the total intensity of a frame is not satisfied, 𝑀(𝑡) > 𝛼𝐷  the 

frame is not saved or processed further, where 𝛼 is the global event-driven threshold. In 

addition, if the total intensity of any circular area satisfies 𝐻!(𝑡) > 𝛽𝐵! , the frame is 

considered as an effectively triggered frame, where	 𝛽 is the local event-driven threshold. 

An example of an effectively captured frame triggered by DLLM (Figure 4c).  

Conventional image processing methods typically require frame-wide analysis 

( 350 × 350  pixels), necessitating 122,500 operations per frame regardless of event 

occurrence. This 𝑂(𝑊𝐻)  complexity, where 𝑊  and 𝐻  represent frame dimensions, 

introduces significant computational overhead and potential susceptibility to ambient noise. 

Our DLLM implementation employs a two-stage approach combining global thresholding 

(𝑀(𝑡) > 𝛼𝐷) with targeted regional processing (𝑁 × 𝜋𝑟%), where 𝑁 = 25 taxels and 𝑟 =

20 pixels. This strategic reduction in processed pixels (from 122,500 to approximately 

31,416 per frame) achieves a 74.4% improvement in computational efficiency while 

maintaining robust event detection capabilities. 

All effective frames are subjected to further feature extraction. Starting with calculating 

the weighted centroid coordinates for each circular area:  

𝑞!(𝑡) = /𝑞!,+ , 𝑞!,,9 = =
∬  "!

𝑥𝐼(𝑥, 𝑦)𝑑𝐴

∬  "!
𝐼(𝑥, 𝑦)𝑑𝐴

,
∬  "!

𝑦𝐼(𝑥, 𝑦)𝑑𝐴

∬  "!
𝐼(𝑥, 𝑦)𝑑𝐴

? = @
𝑈!,+(𝑡)
𝐻!(𝑡)

,
𝑈!,,(𝑡)
𝐻!(𝑡)

B						(7) 

𝑈!,+(𝑡) = .  
#$

%&'

.  
(

)&'

/𝑐!,+ + 𝜌 cos(𝜙)9𝐼/𝑐!,+ + 𝜌 cos(𝜙) , 𝑐!,, + 𝜌 sin(𝜙)9											(8) 

𝑈!,,(𝑡) = .  
#$

%&'

.  
(

)&'

/𝑐!,, + 𝜌 sin(𝜙)9𝐼/𝑐!,+ + 𝜌 cos(𝜙) , 𝑐!,, + 𝜌 sin(𝜙)9											(9) 

Based on the center coordinates and weighted centroids, an offset vector is calculated: 
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𝑣⃗!(𝑡) = /𝑣!,+ , 𝑣!,,9 = 𝑞!(𝑡) − 𝑐! = @
𝑈!,+(𝑡)
𝐻!(𝑡)

− 𝑐!,+ ,
𝑈!,,(𝑡)
𝐻!(𝑡)

− 𝑐!,,B											(10) 

These vectors are then converted into polar coordinates, recording the vector’s length 𝑙!(𝑡) and 

polar angle 𝜔!	(𝑡). Together with the total intensity 𝐻!(𝑡) of the circular area, serves as the 

feature values of the taxel 𝑍!(𝑡) = (𝐻!, 𝑙!, 𝜔!). These parameters together characterize the taxel’s 

sensory data (Figure 4d). A pseudocode of DLLM is provided (Figure S15).  
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Note S4. Interaction identification performance evaluation 

For the eight interactions classification, the MAVIG system was attached to the 

terminal of a UR5 robot arm via it’s inherited attachment unit with M6 screws. A metal 

screw (M8, 7.7 mm × 160 mm) was selected as an interactive object. It was placed on the 

sensor, occupying 21% of the sensing area. The participants interact with the object held 

by MAVIG with a 5 × 5 rod patterned ML sensing layer. The processing with DLLM 

retained only radial distance and direction data of the ML distribution centroids. The time 

series data for the CNN is segmented into samples using a window size of 8. The dataset 

is divided, with 80% for training and 20% for model validation. The CNN model 

architecture starts with a Conv1D layer with 32 filters using the ReLU activation function; 

then, it goes through batch normalization and downsampling to arrive at another Conv1D 

layer with 128 filters. Subsequently, two dense layers with ReLU activation functions 

follow, followed by a final dense layer utilizing SoftMax as the activation function to 

output the classification probabilities. The model achieved a classification accuracy of 

92.68% (Figure S9). The process was implemented in Python. 
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Note S5. Mouth interfaces vs. third arms 

The study on quadruped robots mainly focuses on localization and mapping but lacks 

manipulation capabilities, limiting their usefulness in many applications.[S1] Enhancing 

these robots with robotic arms transforms them into mobile manipulators, allowing 

environmental interaction. However, adding an arm introduces challenges, including 

increased weight and payload constraints, which can impact the robot’s balance and energy 

efficiency. Moreover, motion planning becomes complex. Some approaches treat the arm 

as an independent system, simplifying control but risking inaccessibility if the subsystems 

are poorly positioned.[S2] An integrated whole-body control approach offers optimal 

performance but requires sophisticated algorithms.[S3] 

In contrast, equipping quadruped robots with a mouth interface instead of a third arm 

offers distinct advantages. Psychologically, a mouth interface resonates more with human 

users due to its familiarity, enhancing emotional connection, particularly in therapeutic or 

social robots.[S4] It maintains a balanced and streamlined design, reducing mechanical 

complexity and weight, which improves the robot’s balance and energy efficiency—key 

factors for longevity and maneuverability. Additionally, integrating a mouth interface 

utilizes the robot’s existing body plan more effectively, which is especially beneficial in 

confined spaces where a third arm hinders maneuverability and accessibility. 
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Figure S1. Load-displacement curve of the 5 substrate candidates: Sorta-clear 37 

(SC37), Polydimethylsiloxane (PDMS), Sorta-clear 10 (SC10), DragonSkin30 (DS30), 

and Ecoflex 30 (EF30) 
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Figure S2. Schematic depiction of spherical and diamond-shaped objects engaging 

with a flat and a rod-patterned surface. An objects show single-point contact (green) 

with the flat surface; a counterparts adapt to the rod-patterned surface contours, 

depicted by increased contact surface, illustrating the importance of compliance in 

achieving multi-point contact. 
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Figure S3. The graph illustrates the relationship between force and maximum 

displacement for Sliding and Pressing motions, as well as the ratio of Sliding to 

Pressing. 
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Figure S4. Stress Distribution in Cylindrical Structures with Variable Geometry. a) 

Cylinders of uniform radius and increasing height, revealing a consistent high-stress zone 

at the base across heights. b) Illustrates cylinders of uniform height with increasing radii, 

where a larger radius corresponds to a broader high-stress region at the base.  
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Figure S5. The design schematic of the tri-layered ML rod elastomer containing: the 

light-absorbing layer, ML layer and the core. Scale bar, 5 mm. 
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Figure S6. Comparative analysis of light-absorbing materials: Silc Pig, UVO, CNT, 

and Water-based Ink a) Spectral intensity comparison of four absorbing materials across 

wavelengths from 400 nm to 900 nm. b) Performance difference comparison between UVO 

and Silc Pig CNT and Silc Pig, and Water-based ink and Silc Pig across wavelengths from 

400 nm to 900 nm. 
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Figure S7. Experimental characterization of force direction sensitivity. a) Schematic 

illustration of the testing setup, showing the interaction between the sensor and a vertical 

cylindrical rod at various angles (θ) relative to the horizontal direction. Force (F) is applied 

by controlling the approach angle while maintaining constant movement speed. b) Box plot 

distribution of measured angles versus applied angles (0°, 15°, 30°, 45°, 60°, 75°, and 90°). 
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Figure S8. Confusion matrices comparing classification results with different feature 

data combinations as inputs to the CNN. a) Solely intensity, b) radial distance and c) 

angle of the centroid of the ML distribution. d) Combination of intensity and radial distance. 

e) Combination of radial distance and angle. f) Combination of intensity and angle. 
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Figure S9. Confusion Matrix of the CNN model with 8 interaction types as inputs. 
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Figure S10. Structural and elemental analysis of the ZnS:Cu and SC37 composite. a) 

Cross-sectional SEM image at 250x magnification showing the distribution of ZnS:Cu 

particles within the SC37. b) SEM image at 500x revealing the detailed morphology of 

ZnS:Cu particles. c) Elemental mapping at 250x and 500x magnifications for zinc (Zn), 

sulfur (S), and copper (Cu), illustrating the distribution of these elements within the 

composite. d) X-ray diffraction pattern of a. e) X-ray diffraction pattern of b. 
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Figure S11. Fabrication process of the dog-bone shaped ML elastomers (ISO37 

standard) for tensile tests. a) Add ZnS:Cu and elastomer into a container and mix it using 

a Planetary Centrifugal Mixer. b) Cast the ML elastomer onto the ISO37 mold. c) Vacuum 

the ML elastomer mold at 30 kPa to remove bubbles. d) Thermal curing at 60°C. e) Demold 

the ISO37 ML elastomer. f) Install ISO37 ML elastomer onto the universal machine. 
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Figure S12. Experimental setup for evaluating the mechano-to-photon conversion efficiency 

of ML composite films. a) The setup includes a cupping machine for sample elongation and 

a lifts for connent the fibre from the spectrometer. b) An Ocean Optics QE65 Pro 

spectrometer is connected for measuring light emissions from the films upon deformation. 

 

  



21 

 

 

Figure S13. Fabrication process of the ML rod-array elastomer. a) Add rubbber and black 

pigment into a container and mix it using a Planetary Centrifugal Mixer. b) Cast the 

elastomer onto the patterned base mold. c) Vacuum the elastomer mold at 30 kPa to remove 

bubbles. d) Insert the fork and filter mold onto the elastomer. e) Thermal curing at 60°C. f) 

Demold the light-absorbing layer. g-l) Repeat the process for the ML layer. m-r) Repeat 

the process for the rubber core layer, following the same steps. Finally, assemble the ML 

rod-array sensor onto the sensing module. 
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Figure S14. Speed-intensity correlation in ML elastomers: displays the relationship 

between sliding speed and ML emission intensity for a robotic finger sliding across 

an ML elastomer at six distinct velocities. The data shows a positive correlation 

between sliding speed and intensity, as evidenced by a high logarithmic regression 

coefficient (R² = 0.98). 
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Figure S15. The schematic representation and photograph of the MAVIG. a) Exploded view 

of the MAVIG system. Scale bar, 3 cm. b) Dimensions of the gripping system. c) Photograph 

of the gripping system with the ML Elastomer (without the light-absorbing layer 

assembled). Scale bar, 4 cm. 
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Figure S16. Experimental setup for evaluating the power consumption of different 

visuotactile sensors via a USB power-meter connected to a computer. The sensors were 

adjusted to their maximum resolutions during the experiment. a) The measurement of the 

commercial visuotactile sensor DIGIT’s power consumption. b) The measurement of the 

ML-powered gripping system’s sensing module. Scale bar, 4 cm. 
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Figure S17. The pseudocode of DLLM and the process toward CNN network 
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Figure S18. Confusion matrix of the classification performance across four motion types: 

Push/Pull, Sliding, Rotation clockwise, and Rotation anticlockwise.  
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Table S1. Characteristic comparison of reported sensors for mechanical 

stimuli 

Sensor type Distributed 

detection* 

Material Power 

consumption 

Adaptability Reference 

Piezophotonic sensor No PET and ZnS:Mn None High Nat. Photonics 7(9) (2013): 752.  

Adv. Mater., 2015, 27(14) 

Piezoelectricity sensor No PDMS, polyester and 

stainless steel 

None Low Nat. Electron. 571, 578 (2020) 

Optical lace structure Yes Polyurethane High Low Sci. Robot. 4, eaaw6304 (2019) 

Stretchable distributed 

fiber 

Yes Silica gel and dye High High Science 370, 848 (2020) 

Mechanoluminescent 

optical fiber sensor 

Yes PDMS and doped 

ZnS 

None Low  

(Dark condition) 

Nat. Electron. 682, 693 (2022) 

 

Mechanoluminescent 

visuotactile sensor 

Yes SC37 and ZnS:Cu None High 

(Environmental 

versatility) 

This work 

*Distributed detection refers to a method that identifies changes in mechanical stimuli 

at various positions by analyzing the optical signal at the end. 
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Table S2. Systematic comparison of conventional and ML-based sensing 

architectures 

Characteristics Piezoresistive Capacitive Optical waveguide 
Traditional visuotactile (e.g., 

GelSight) 

ML-based 

visuotactile (This 

work) 

Adaptability 
Fixed calibration 

required 

Environmental 

interference sensitive 

Limited by 

waveguide design 
Fixed calibration needed 

Self-recoverable 

operation 

Data processing  
Continuous 

sampling 
Continuous sampling 

Continuous 

optical readout 

High-resolution continuous 

imaging (11.025M pixels/s) 
Event-driven 

Power 

requirements 
Low (0.1-0.5 W) Medium (0.3-0.8 W) High (>1 W) High (1.222 W, LED system) Medium (0.542 W) 

System 

complexity 

Multiple wiring 

points 

Complex electrode 

patterns 

Optical coupling 

required 
LED array + camera system 

Single USB 

connection 

Environmental 

stability 

Temperature 

sensitive 
Humidity sensitive Light interference 

Thermal degradation in 

LEDs 

Stable under varied 

conditions 

 

  



29 

 

Reference 

[S1]  M. S. Lopes, A. P. Moreira, M. F. Silva, F. Santos, in EPIA Conference on Artificial 
Intelligence, Springer,  2023. 
[S2]  S. Zimmermann, R. Poranne, S. Coros, in 2021 International Conference on Robotics 
and Automation (ICRA),  2021. 
[S3]  a) C. D. Bellicoso, K. Krämer, M. Stäuble, D. Sako, F. Jenelten, M. Bjelonic, M. 
Hutter, in 2019 International Conference on Robotics and Automation (ICRA), IEEE,  
2019; b) J.-P. Sleiman, F. Farshidian, M. V. Minniti, M. Hutter, IEEE Robotics and 
Automation Letters 2021, 6, 4688. 
[S4]  a) Y. Hu, B. Chen, J. Lin, Y. Wang, Y. Wang, C. Mehlman, H. Lipson, Science 
Robotics 2024, 9, eadi4724; b) F. Krueger, K. C. Mitchell, G. Deshpande, J. S. Katz, 
Animal Cognition 2021, 24, 371. 

 

 


