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A B S T R A C T   

Electronic skin with tactile perception enables intelligent robots and prostheses to perform dexterous manipu-
lation and natural interaction with the human and surroundings. However, using single tactile sensing mecha-
nism to simultaneously percept geometry features and materials properties remains a challenge due to the 
bottleneck of signal decoupling. Herein, we report the MTSensing system – a wireless and fully-integrated tactile 
sensing system that can simultaneously recognize materials and textures based on a single flexible triboelectric 
sensor. The proposed triboelectric sensor converts touch into electrical signals and meanwhile, the signal pro-
cessing pipeline decouples the signals into macro/micro features and feeds them into the corresponding deep 
learning models, which simultaneously predict the materials and textures of the contacted objects with the ac-
curacies of 99.07% and 99.32%, respectively. The systematic integration of MTSensing hopes to pave the way for 
deploying low-cost and scalable electronic skin with multi-functional perceptions.   

1. Introduction 

The tactile sensation from electronic skin (e-skin) empowers the 
intelligent robotic system and prostheses for accurate motion trajectory 
planning [1], dexterous manipulation [2], safe operation [3], and 
diversified environment perception [4]. As an essential component to-
wards intelligent sensing and control, tactile sensing leverage multiple 
mechanisms that have been developed to facilitate the tactile sensation 
of the robotic system [5], including piezoresistive array [6], soft optical 
strain sensor [7], magnetic microelectromechanical sensor (m-MEMS) 
[8], capacitive array [9], and piezoelectric sensor [10,11]. However, 
such single-mode sensors only percept mechanical stimuli, lacking 

capability of sensing material properties. To this end, multimodal tactile 
sensors, which integrated more than one sensing mechanisms, enabled 
capturing both material properties and mechanical stimuli to facilitate 
robots with more accurate perception and interaction with surroundings 
[12,13]. Nevertheless, vertical stacking or planar arranging multiple 
sensors will unavoidably increase the thickness or reduce the spatial 
resolution. Moreover, signals simultaneously output from multiple 
sensors may mutual interfere with each other [14]; and the cost-effect 
issue is also hindering the popularization of commercial multimodal 
tactile sensor [15]. 

As a capacitive-like sensor [16–18], the emerging triboelectric 
nanogenerator (TENG) based sensors have shown the great potential in 
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realizing tactile sensing and e-skin, due to its low-cost, flexibility and 
wide choice of materials [19–25]. Although the advancement of 
TENG-based e-skin systems is improving the diversity [26–31] and us-
ability of information [32–34], the data analysis pipelines of the existing 
systems [35–38] did not effectively decouple the material and texture 
features from the output signal of TENG, let alone to minimize the 
computational overhead of data analysis. Therefore, developing a sys-
tem that can extract more hidden information in TENG signals while 
compatible with portable and wearable low-power embedded devices is 
expected to bring TENG-based e-skin systems to more broad 
applications. 

Inspired by the perceptual habit of the human’s fingertip [39,40] and 
motivated by the lack of signal decoupling, high fabrication cost, and 
devoid of system-level integration of existing tactile technologies [41], 
we developed a novel e-skin tactile sensor based on TENG, which only 
leveraged a single type of mechanism to realize multimodal sensing. 
Thanks to the inherent contact electrification properties and the adopted 
grating structure, the output signal’s macro features (amplitude, trend, 
envelope, etc.) can be exploited for material recognition. In contrast, the 
micro features (frequency, changing point, variance, etc.) can be used 
for surface texture recognition. Considering the real application re-
quirements, a signal decoupling method is proposed by introducing the 
wavelet transform. Based on this, a wireless and fully integrated system, 
“MTSensing”, is implemented for real-time and simultaneous material 
and texture recognition. The MTSensing system contains three main 
parts, i.e., the fingertip sensor, the sensor-end circuit, and the display 
terminal. The sensor-end circuit encapsulated in a wearable bracelet is 
responsible for analysing the signal and wirelessly transmitting the 
result to the remote terminal for display. With the assistance of deep 
learning algorithms, we achieved high accuracies in the individual 
material (8 types, 98.45%) and texture (13 types, 98.03%) recognition 
tasks, and in the simultaneous material (4 types, 99.07%), texture (4 

types, 99.32%) and object (16 combinational types, 98.40%) recogni-
tion tasks, respectively. Moreover, the fabrication of the sensing device 
and the rest hardware components system is fully compatible with the 
mature flexible printed circuit board (FPCB) processes, indicating the 
feasibility for low-cost and scalable deployment. 

2. Results 

2.1. MTSensing system for real-time and simultaneous material and 
texture recognition 

As illustrated in Fig. 1a, the proposed MTSensing system provides 
simultaneous material and texture recognition for robotics and assistive 
technologies. The grating-structural free-standing TENG (GF-TENG) 
sensor attached to the fingertip of a robotic hand works as the front end, 
which generates analog sensing signals upon contact with objects. The 
signals are acquired and processed by the on-bracelet sensor-end circuit, 
where the features like the amplitude, frequency, local peak, and small 
vibration corresponding to different material and texture characteristics 
will be decoupled and further extracted to realize the simultaneous 
recognition. Finally, the waveforms and recognition results will be sent 
wirelessly to the remote terminal for real-time display. 

The flexible GF-TENG sensor shown in Fig. 1b has a size of 20 mm by 
15 mm with an overall thickness of 160 µm. The polyimide (PI) sub-
strate attached to the robotic hand is robust to mechanical wearing and 
resilient to high-temperature soldering. The middle layer contains 
20 µm thick interdigitated copper electrodes, where a 0.025 µm gold 
layer is deposited for antioxidant and long-standing. The top layer for 
triboelectrification with contact surfaces adopts the 3 M Kapton tape of 
30 µm thickness. Details of a manufactured GF-TENG sensor can be 
found in Fig. S1. The output signals of the GF-TENG sensor are affected 
by the object materials, while the grating-structure design enables the 

Fig. 1. Schematic illustration of the MTSensing system. (a) The schematic workflow of the MTSensing system: the flexible triboelectric sensor on fingertip converts 
the object features including material and texture characteristics into the signal and passes it to the customized PCB module for data processing and recognition, and 
the results will be wireless transmitted to and displayed on the mobile devices. (b) Layered illustration of the proposed fingertip grating-structural freestanding TENG 
(GF-TENG) sensor. (c) The system-level block diagram of the data acquisition and recognition processing on the PCB module. 
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sensor to be sensitive to the surface textures. Thanks to the mature FPCB 
process, the GF-TENG sensor is suitable for mass production. 

The wearable bracelet (Fig. 1a) consists of three functional compo-
nents: a signal conditioning circuit, a microcontroller unit (MCU) where 
the recognition model is applied, and a wireless transmitter (Fig. 1c). 
The conditioning circuit amplifies and filters the analog signals from the 
sensor and then converts the conditioned into digital form. Once the 
MCU receives the digital signals, the customized signal processing and 
deep learning-based recognition model distinguish the material and 
texture characteristics of the target objects. Finally, customized software 
on the smart device presents the recognition results and the real-time 
signals. 

2.2. The optimization and characterization of the GF-TENG sensor 

The electric output of TENG relies on the coupling effect of contact 
electrification and electrostatic induction. Specifically, the proposed GF- 
TENG sensor is based on the freestanding-mode TENG [42,43] and its 
working mechanism is shown in Fig. S2. To verify the working mecha-
nism and theoretical output of the GF-TENG sensor, the finite element 
method (FEM) calculation under the open-circuit condition is carried 
out utilizing the COMSOL Multiphysics®. The electric potential 

distributions of the GF-TENG sensor and the target object during four 
working stages can be found in Fig. S3. Further simulation studies by 
setting the material parameters of corresponding sensing objects indi-
cate that the capacitance-like GF-TENG sensor can distinguish materials 
it slides over (Fig. S4). The FEM analysis [44] of the sensor sliding over 
various textures is shown in Fig. S5. 

The interdigitated electrodes in GF-TENG can enhance the texture 
recognition capabilities. Nine GF-TENG sensors (Fig. S6) of different 
electrode size and gaps are fabricated (Fig. 2a) and tested under the 
same condition, horizontally sliding over the same standard texture with 
8 N applied normal force (the chosen progress of the applied normal 
force is explained in Note S1). The generated time-domain signals of the 
nine sensors and the corresponding signal-to-noise ratio (SNR) are 
shown in Fig. 2b and c, respectively. The detailed calculation process of 
the SNR is provided in Note S2. The GF-TENG sensor with 2 mm elec-
trode width and 2 mm electrode distance with the highest SNR is 
adopted throughout this project to extract the hidden features and 
restrain the noise. 

The output performance of the sensor is characterized following the 
standard process [45]. The open-circuit voltage denoted as Voc, the short 
circuit current denoted as Isc and the transferred charge denoted as Q are 
measured, as shown in Fig. 2d–f, with a fixed sliding distance of 25 mm 

Fig. 2. Optimization and characterization of the proposed GF-TENG sensor. (a) The width of electrodes and distance between electrodes are adjusted from 1 mm to 
3 mm. (b) The sensing waveforms of sliding on cotton fabric corresponding to the structures in (a). (c) The corresponding signal-to-noise ratio (SNR) is displayed in a 
3-dimensional coordinate frame, which shows the maximum SNR is achieved when both the electrode width and distance are 2 mm. (d) The open-circuit voltage of 
the GF-TENG sensor. (e) Short-circuit current of the GF-TENG sensor. (f) Short-circuit charge transfer of the GF-TENG sensor. (g) Variation of the output voltage and 
current with the external load resistance. (h) The output power under different external load resistances. (i) Durability test of the GF-TENG sensor. 
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and a fixed sensing object of cotton covered on a smooth plane. The 
output performance of GF-TENG is investigated with external load 
resistance ranging from 100 MΩ to 100 GΩ. As shown in Fig. 2g, the 
maximum power occurs by connecting 1 GΩ load resistor (Fig. 2h). 
Therefore, 1 GΩ is set as the optimal matching resistance in the 
following experiment. In addition, the durability test of the sensor is 
performed by sliding the GF-TENG sensor on cotton fabric attached to an 

acrylic base for 6000 cycles, each cycle contains 20 mm forward and 
backward horizontal slides with the applied normal force of 8 N. The 
output voltage waveform shown in Fig. 2i reveals that there are no 
distinctive decreases or distortions during the durability test. 

Fig. 3. Data collection of different materials and textures on a standardized platform. (a) The experimental platform for standardized testing and data collection. (b) 
The eight objects made of cotton, resin, paper, spongy, wood, acrylic, glass, copper, and 13 different textures designed based on flat, sawtooth, triangle and arch. The 
No. 1 texture is flat, the No. 2-No.5 textures are of sawtooth but with different densities, while the No. 6-No. 9 and No. 10-No.13 are of triangle and arch separately. 
(c) The measured voltage output of GF-TENG sensor sliding over eight materials. (d) Average peak voltage of GF-TENG sensor sliding over eight materials from 
measurement and simulation (red star), which is consist in trends. (e) The simulation result of sliding over four textures. (f) The measured signal of GF-TENG sensor 
sliding over four textures. 
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2.3. Capability characterization of the individual material and texture 
recognition tasks 

An experimental platform is designed to investigate the influences of 
contact materials and textures on the sensing signal, where the sensor is 
characterized using standard objects. In the platform, the GF-TENG 
sensor is attached to a linear motor and slides on the standard objects 
with the reciprocating motion of the motor. Apart from the material 
types, the normal pressure applied on GF-TENG sensor can also influ-
ence the output signal during the reciprocating motion. A pressure 
sensor is mounted below the object, and a high precision lifting platform 
is used to offset the installation error to keep the normal pressure uni-
form, shown in the explosive view (Fig. 3a). At the beginning of each 
experiment, the high precision lifting platform is fine-tuned to adjust the 
pre-tightening pressure force to 8 N. To explore the influence of material 
and texture on GF-TENG sensor respectively, eight flat objects with 
different materials, and 13 resin made objects with different textures are 
designed (Fig. 3b). 

Based on the dielectric properties of the materials, the simulations 
are conducted to investigate the influence of the materials on the free- 
standing TENG. Then the influence of electrodes on the output signal 
is further explored. Within the same sliding distance and different ma-
terials, the free-standing TENG generates signals with different 
maximum voltage. According to the comprehensive studies of free- 
standing TENG working principles [46], it can be concluded that the 
electron-capture ability of contact materials is a significant contributing 
factor that affects the amplitude of the output voltage. Fig. 3c shows the 
signals peak values from eight sensing targets with different materials 
varies. Therefore, this difference can be treated as the basis for differ-
entiating different materials. The comparison average experimental 
voltage peak values (columns with different colors) and the theoretical 
voltage peak values (red star marks) of the eight materials is shown in 
Fig. 3d. The match of the trend of the average experimental peak volt-
ages and the trend of the theoretical ones provides a strong reference for 
finding a stable and effective algorithm for material recognition [47]. 

To explore the influence of textures on sensing signals of the GF- 
TENG, the FEM simulation on the four resin samples of four surface 
textures, i.e., smooth, sawtooth, triangle and wavily surfaces, of which 
the corresponding results are depicted in Fig. 3e. The geometric char-
acteristics of the signals are affected by the shape and density of tex-
tures, which can be used for texture recognition. As shown in Fig. 3f, 
signal waveforms from 4 textures are different. These characteristics 
show the possibility of the GF-TENG sensor to sense various textures. 
Therefore, if equipped with a proper feature extracting and classification 
algorithm, the GF-TENG sensor can be used for material and texture 
sensing by simply sliding over the sensing objects. To deploy deep- 
leaning-based recognition model on MCU, a lighter network, one- 
dimensional CNN (1D CNN) is adopted to achieve recognition of mate-
rials and textures, respectively. Besides, 1D CNN has the specialty for 
extracting features from fixed-length time series segments, where the 
location of the features within the segment does not affect the classifi-
cation result. To predetermine the scale of 1D CNN, a classical 1D CNN 
shown in Fig. S7a is designed to process the filtered signal directly, 
trained with the data from 8 materials and 13 textures separately. Note 
S3 shows the principle of training the model. The performance of the 
classical 1D CNN is presented in Fig. S7b–e. 

2.4. Signal decoupling and capabilities of simultaneous material and 
texture recognition tasks 

One important fact of the original signal is that the material infor-
mation and texture information are coupled together. Fig. 3c reveals 
that material type affects the amplitude of the signal, which mainly 
contains the low-frequency but high-power components. Fig. 3f shows 
that standard textures made of the same material lead to the approxi-
mate upper bound but causes different quantities, positions and 

durations of the peaks. The decoupling progress that separates the ma-
terial and texture features from signals is critical for simultaneously 
distinguishes the material and texture of the sensing object. Here, 
wavelet decomposition is adopted for decoupling. During the wavelet 
decomposition, Haar wavelet bases are applied to represent the macro 
and micro features on two inner product spaces V and W separately, 
which are mutually orthogonal. Note S4 introduces the details in the 
calculation of the wavelet decomposition. The projection of the original 
signal on space V with low resolution is used to represent the macro 
feature, while the projection on space W with higher resolution but 
excluding amplitude information is used to reflect the micro feature. It 
should be noted that since both the material and applied force influence 
the signal amplitude, the accurate material classification of GF-TENG 
can only be made under controlled applied force. Nevertheless, we 
investigate the relationship between the pressure force and output sig-
nals of the GF-TENG sensor as shown in Fig. S8, where the applied 
pressure only affects the signal amplitude without changing the wave-
form modality. Further studies (Fig. S9) indicate that the GF-TENG can 
work as a pressure sensor with linearly response to the applied force. 

Therefore, a new model that decouples macro and micro features and 
achieves simultaneous recognition is proposed based on Haar wavelet 
decomposition and 1D CNN to further improve the interpretability and 
obtain information on the two multimodalities, materials and textures. 
As illustrated in Fig. 4a, the recognition model contains two paralleled 
1D CNNs, each consists of three convolutional layers and a fully con-
nected layer which also serves as the classifier. The macro and micro 
features of the same scale are extracted by the Haar wavelet decompo-
sition. The 1D CNN model fed with the macro features provides the 
material recognition result, while the 1D CNN model fed with micro 
features gives the texture recognition result. Finally, the material and 
texture recognition results are merged as the recognition result by 
combing the results of these two parallel 1D CNNs. 

A dataset supporting the training on the proposed model is built, 
which contains 5600 sets of sensing signals of all possible combinations 
of four materials (copper, cotton, resin, and paper) and four textures 
(T1, T5, T9, T13, the numerical labels of the textures refer to Fig. 3b) 
accordingly (Fig. 4b). The decoupled features of selected samples of the 
sensing signals of 16 standard objects are shown in Fig. 4c (total com-
parisons between the original signals and the wavelet decomposition 
results are depicted in Fig. S10). The recognition results of the material 
recognition model and the texture recognition model are shown in 
Fig. 4d and Fig. 4e respectively. The simultaneous recognition results are 
the combinational effects of the material and texture recognition 
models. Here, the confusion matrix shown in Fig. 4 f is calculated by the 
Kronecker product [48] (details in Note. S5) of the matrices in Fig. 4d 
and e, and the average recognition accuracies reach 99.07% and 99.32% 
separately. The dual recognition model performs better in the material 
recognition task and texture recognition task, compared to the recog-
nition model without distinguishing macro and micro features. The 
variations of recognition accuracies come from the mutual effects of 
different pairs of materials and textures. The lowest recognition accu-
racy of all classes based on the combined dataset of materials and tex-
tures is 97.15% which appears on the T1 texture made of cotton. The 
highest recognition accuracy of 99.50% is acquired on the T13 texture 
made of resin. Besides, recognition on the 8 materials and 13 textures 
proposed in Fig. 3b is conducted, and the performances are shown in 
Figs. S11 and S12. 

2.5. Design and demonstrations of the MTSensing system in real 
applications 

To further explore the potential and the application of the proposed 
GF-TENG and simultaneous recognition model, a wearable MTSensing 
system is conceptualized for real-time data acquisition and recognition. 
The workflow of the MTSensing system is depicted in Fig. 5a. To match 
the high impedance of GF-TENG and convert current signals to the 
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Fig. 4. Signal decoupling and simultaneous recognition model. (a) The architecture of the decoupling and customized 1D-CNN-based recognition model built to 
extract and classify features. (b) The 16 standard objects from the cross-pairing of 4 materials (copper, cotton, resin, and paper) and 4 textures (T1, T5, T9, T13, 
numerical labels refer to Fig. 3b) for simultaneous processing. (c) Selected samples of the sensing signals and the corresponding decoupled features. (d) The confusion 
matrix of the material recognition task on the 4 materials. (e) The confusion matrix of the texture recognition task on the 4 textures. (f) The confusion matrix of the 
merged recognition result on the 16 standard objects in (b). 
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acceptable voltage signals (0–3.3 V) of the analog to digital converter 
(ADC), a trans-impedance amplifier is deployed. Inside of the MCU, the 
converted digital signal is further down-sampled and goes through a 
low-pass filter. Then, the macro and micro features are extracted by 
Haar wavelet transform and fed into two independent deep learning 
models to support the material and texture recognition separately. At 
the end, both network outputs are combined to obtain the result. At this 
point, the recognition results will be sent to the display terminal via 
Bluetooth. To demonstrate the feasibility of this, the wearable 
MTSensing system is deployed on an actual human hand shown in 
Fig. 5b. The GF-TENG sensor is attached to the fingertip during sliding 
over the sensing targets. It achieves real-time simultaneously recogni-
tion of material and texture information of the 16 sensing targets 
introduced in Fig. 4b (see the Movie. S1). Based on these functions, more 
complicated and practical sensing applications can be developed. 

Supplementary material related to this article can be found online at 

doi:10.1016/j.nanoen.2021.106798. 
Braille using special raised dots to provide visually impaired people 

with classifiable tactile perception needs long-term systematic learning. 
The dots of different braille words constitute special textures, and braille 
words on different household applications are of different materials. In 
Fig. 5c, a human hand with a GF-TENG sensor attached to the fingertip 
of the index finger randomly slides on the braille words including 
numbers one to nine made of resin, paper, and copper separately (the 
placement is shown in Fig. S13). Meanwhile, a smartphone displays the 
real-time waveform and the braille recognition result (see the Movie. 
S2). The classification model utilized in the on-bracelet circuit is pre- 
trained offline using the data of the sensing signals generated by the 
GF-TENG sensor. Fig. 5d shows the selected samples of the sensing 
signals corresponding to the braille boards made of copper, resin, and 
paper. The signals of numbers made of the same material show close 
amplitude but different waveforms, while the same numbers made of 

Fig. 5. Design and applications of MTSensing system. (a) The classical signal processing and deep learning algorithm assist the data process workflow of the 
MTSensing system. (b) Real time simultaneous material and texture recognition based on MTSeneing system. (c) Real time braille recognition based on MTSeneing 
system. (d) Sample of sensing signals of braille number made of 3 materials. (e) Training progress of the braille number recognition model. 
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different materials have similar waveforms but different amplitudes. 
The training progress on both material and braille recognition for the 
pre-training process is shown in Fig. 5e, where the joint recognition 
accuracy of 95.25% is reached within 60 iterations. Compared to 
traditional assistive braille recognition techniques, our MTSensing sys-
tem can not only recognize the braille information but also distinguish 
the materials of the braille, which can be helpful on many occasions to 
help blind people and tactually impaired people better understand the 
braille on various infrastructures. Hence, the MTSensing system shows 
the potential for creating a promising assistive technology to allow 
visually or tactually impaired people better interact with modern smart 
devices and the environment around them. 

Supplementary material related to this article can be found online at 
doi:10.1016/j.nanoen.2021.106798. 

3. Discussion 

We present a wireless and fully integrated tactile sensing system – 
MTSensing for real-time and simultaneous material and texture recog-
nition. The design of the GF-TENG sensor is optimized by FEM to 
accurately reflect the texture features and contact materials. Then, 
signal processing pipeline made of wavelet decomposition-based signal 
decoupling followed by two paralleled 1D CNNs achieves material and 
texture recognition with over 98% accuracy. Finally, to demonstrate the 
reconfigurable usage of the MTSensing system, a braille recognition task 
is conducted to illustrate its application in assistive technology. 

The attractive features of the MTSensing system include scalable 
fabrication processes and fully integrated material and texture sensing 
capability. The adoption of the mature FPCB process readily to large- 
scale produce the flexible sensors with arbitrary geometry. Therefore, 
the GF-TENG can be easily manufactured on a large scale and is adaptive 
to individualized applications. The sensing capability of textures and 
materials is established by innovatively decoupling a single signal 
stream. The proposed data processing model based on wavelet decom-
position and 1D CNN is highly efficient, which can execute real-time 
analysis on embedded devices, such as low-power MCU with limited 
computing and memory resources. 

In summary, the MTSensing system has great potential to empower 
robots with tactile sensation. To show this, a MTSensing system is 
deployed on a robot hand that achieves real-time recognition of common 
objects (see the Movie. S3, the tested objects are shown in Fig. S14). The 
proposed data processing model with low computational complexity 
enables the MTSensing system to independently work with low-cost 
edge devices. As a reconfigurable system, the application of MTSens-
ing is not only limited to robotics. In the field of assistive technology, it is 
expected to restore the lost tactile sense of the impaired person with low 
response delay and high compatibility. Likewise, the reconfigurable 
design incorporates more modalities, such as shear stress, torsional 
stress, and temperature. Therefore, to expand its usage is worthy of 
exploring, a more complex deep learning network, processing data of 
more modalities, may designed and implemented in future works. Due 
to the limitations of the working mechanism of the GF-TENG, the 
simultaneous recognition of material and pressure have not been ach-
ieved. In future works, we expect to introduce new design to incorporate 
real-time pressure sensing and improve the conformability and 
stretchability of the device. 

Supplementary material related to this article can be found online at 
doi:10.1016/j.nanoen.2021.106798. 

4. Method 

4.1. Fabrication of the grating-structure freestanding-TENG tactile sensor 

The FPCB process is utilized to manufacture the soft substrate and 
the electrodes, where six strip electrodes are embedded in a 20 mm by 
30 mm rectangular PI substrate. Each electrode is 20 mm in length and 

2 mm in width, and the intervals of adjacent electrodes are 2 mm. The 
first, third, and fifth electrodes are connected to each other via holes and 
copper traces printed on the opposite side of the soft substrate. At the 
same time, the rest electrodes are also connected to each other in the 
same way symmetrically. Then, the Kapton tape, with the same size as 
the soft substrate and the thickness of 30 µm, is affixed on the electrodes 
side of the substrate. The fabrication price for each GF-TENG senor is 
approximately 0.8 US dollars. 

4.2. Design and fabrication of the wearable bracelet 

The bracelet consists of a sensor-end circuit with three functional 
parts and a compact Li-ion battery for the power supply. The first 
functional part is a conditioning circuit that can amplify the small cur-
rent signal and transform it into a voltage signal that matches the ADC; 
the second part is an MCU for signal processing and neural network 
inference; the last part is a wireless transmitter communicating with the 
remote terminal. Since the current signal generated by the sensor has a 
large output impedance, a low-power amplifier ADA4505 with high 
impedance and low bias current (0.5pA in typical) are selected for this 
design. Considering accuracy, sampling rate, multiple inputs and 
extensibility, we adopt AD7490, a 12-bit high speed, low power, 16- 
channel, successive approximation ADC to connect with the MCU via 
General Purpose Input/Output (GPIO) port. Considering the build-in 
with Bluetooth and Wi-Fi support and limited energy storage, ESP32- 
D2WD dual-core MCU with 2MB flash is selected for computational 
task and communication. The schematic circuit diagram is shown in 
Fig. S15. 

4.3. FEM calculation details 

FEM calculations are conducted to simulate the output performance 
of the GF-TENG. The composition and the applied structure parameters 
of the simulated GF-TENG sensor are identical to the real optimized GF- 
TENG (grating structure TENG with the electrode width of 2 mm and the 
electrode gap of 2 mm, consisting of a 0.018 mm copper electrode layer 
and a 0.065 mm Kapton frictional layer). The sensing progress is unified 
to a single direction sliding with 17 mm and 10 mm sliding distance for 
material and texture sensing progress, respectively. The thickness of the 
sensing object is 2 mm, and the material property of the sensing object is 
controlled by changing the permittivity. Furthermore, textures models 
are conducted with a uniform peak gap of 3 mm, and a peak thickness of 
0.5 mm is built for the simulation of electric behavior on different 
texture types. The whole FEM calculation progress satisfies the law of 
conservation of electric charge, and the charge density distribution 
follows the working mechanism (Fig. S3). 

4.4. Electric measurement and characterization 

Field-emission scanning electron microscopy (Hitachi SU8010) is 
used to characterize the surface vias structure of the GF-TENG sensor 
(Fig. S16). A step motor (LinMot P01–37× 120-C/C1100) is used to 
provide standardized sliding progress. For the electric output measure-
ments of the fingertip GF-TENG sensor, a programmable electrometer 
(Keithley Instruments 6514) is adopted to measure the voltages, currents 
and transferred charges. The NI 9223 and NI cDAQ 9174 modules are 
used to collect data. These methods are used for standardized data 
testing. 

4.5. 1D CNN model architecture and training details 

The 1D CNN model consists of a forward propagation path of three 
one-dimension convolutional layers, three pooling layers, and a fully 
connected layer which also serves as the classifier. Each convolutional 
layer is followed by a batch normalization layer and a ReLU (Rectified 
Linear Unit) activation layer. During training, 70% of the tactile sensing 
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dataset is used for training, rest for validation. The cross-entropy loss is 
utilized, and the whole model is trained using an adaptive moment 
estimation (Adam) optimizer with a learning rate of 0.0001 over 50 
epochs. The batch size is adjusted to 128 to fit on the GPU. The program 
is developed using the Pytorch library, and the model is trained on a 
GeForce RTX 3090 GPU. 

CRediT authorship contribution statement 

W. Ding conceptualized and supervised the project. W. Ding, Z. 
Song, J. Yin, Z. Wang, J. Wang, C. Lu, Z. Yang, Z. Zhao, Z. Lin, and J. 
Cheng designed the experiment. J. Yin and J. Wang carried out the 
simulations. Z. Song, C. Lu, and Z. Zhao designed the software. J. Yin, 
Z. Song, and Z. Wang wrote the original draft. Z.S., Z.W., J.Y., and Z.Y. 
prepared the visualization. All authors discussed and reviewed the 
manuscript. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Data and materials availability 

All data are available in the main text or the Supplementary Mate-
rials. The additional raw data or materials that support the findings of 
this study are available from the corresponding author upon reasonable 
request. 

Acknowledgement 

We acknowledge the assistance and advice of Mr. Junfei Chen and 
Ms. Xu Yang on the design of the PCB. We also thank Dr. Sixing Xu from 
Hunan University for the discussion on the TENG working mechanism. 
This work is supported in part by the National Natural Science Foun-
dation of China under Grants 62104125 and 52007019), by Tsinghua- 
Foshan Innovation Special Fund (TFISF) 2020THFS0109, by the grant 
from the Institute for Guo Qiang of Tsinghua University 2020GQG1004, 
by the Oversea Collaboration Funds of Tsinghua SIGS HW2021 and by 
the Scientific Research Start-up Funds of Tsinghua SIGS QD2021013C. 

Appendix A. Supporting information 

Supplementary data associated with this article can be found in the 
online version at doi:10.1016/j.nanoen.2021.106798. 

References 

[1] Heidemann, G., Schopfer, M., Dynamic tactile sensing for object identification, in: : 
Proceedings of the IEEE Int. Conf. Robot. Autom., New Orleans, (2004), 813–818. 

[2] A. Yamaguchi, C.G. Atkeson, Recent progress in tactile sensing and sensors for 
robotic manipulation: can we turn tactile sensing into vision? Adv. Robot. 33 
(2019) 661–673. 

[3] G. Pang, G. Yang, W. Heng, Z. Ye, X. Huang, H.Y. Yang, Z. Pang, CoboSkin: soft 
robot skin with variable stiffness for safer human–robot collaboration, IEEE Trans. 
Ind. Electron. 68 (2021) 3303–3314. 

[4] R.S. Dahiya, G. Metta, M. Valle, G. Sandini, Tactile sensing—from humans to 
humanoids, IEEE Trans. Robot. 26 (2010) 1–20. 

[5] Baishya, S., and Bauml, B., Robust Material Classification with a Tactile Skin Using 
Deep Learning. in: IEEE Int. Conf. Intell. Robot. Syst., Daejeon, (2016), pp. 8–15. 

[6] S. Sundaram, P. Kellnhofer, Y. Li, J.Y. Zhu, A. Torralba, W. Matusik, Learning the 
signatures of the human grasp using a scalable tactile glove, Nature 569 (2019) 
698–702. 

[7] H. Zhao, J. Jalving, R. Huang, R. Knepper, A. Ruina, R. Shepherd, A helping hand: 
soft orthosis with integrated optical strain sensors and EMG control, IEEE Robot. 
Autom. Mag. 23 (2016) 55–64. 

[8] J. Ge, X. Wang, M. Drack, O. Volkov, M. Liang, G.S. Cañón Bermúdez, R. Illing, 
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