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Abstract— Vibration perception is essential for robotic sens-
ing and dynamic control. Nevertheless, due to the rigorous
demand for sensor conformability and stretchability, enabling
soft robots with proprioceptive vibration sensing remains
challenging. This paper proposes a novel liquid metal-based
stretchable e-skin via a kirigami-inspired design to enable soft
robot proprioceptive vibration sensing. The e-skin is fabricated
into 0.1mm ultrathin thickness, ensuring its negligible influence
on the overall stiffness of the soft robot. Moreover, the working
mechanism of the e-skin is based on the ubiquitous triboelec-
trification effect, which transduces mechanical stimuli without
external power supply. To demonstrate the practicability of the
e-skin, we built a soft gripper consisting of three soft robotic
fingers with proprioceptive vibration sensing. Our experiment
shows that the gripper can accurately distinguish the grain
category (six grains with the same mass, 99.9% accuracy)
and the packaging quality (100% accuracy) by simply shaking
the gripped bottle. In summary, a soft robotic proprioceptive
vibration sensing solution is proposed; it helps soft robots to
have a more comprehensive awareness of their self-state and
may inspire further research on soft robotics.

I. INTRODUCTION

Motivated by the multimodal sensing capability of bio-
logical skin, electronic skin (e-skin) was developed to be
mounted on or embedded into healthcare devices, pros-
thetics, and robotics to enable multifarious sensory func-
tions [1]. Stretchable e-skin with exceptional flexibility and
conformability allows seamless coverage of complex soft
robot surfaces while reducing the hindrance to the mobility
of soft actuators [2]. However, developing an e-skin to
precept soft robots’ self-vibration status is challenged by
compatible design and fabrication to constitute the sensing
elements and soft bodies as a whole [3]. In fact, vibration
information is essential for robotics study. From detecting
the slippage of delicate objects [4] to actively canceling
the undesired damping upon actuation [5], vibration sensing
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Fig1. System Overview
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Fig. 1. System overview. (a) A soft gripper with proprioceptive vibration
sensing is shaking a bottle of soybeans. (b) The voltage output of the
triboelectric e-skin in time and frequency domains. (c) Enlarged photograph
of the triboelectric e-skin.

takes an irreplaceable position. However, existing vibration
sensors (e.g. inertial measurement unit, IMU) are made of
rigid materials, which are mechanically mismatched with
soft robots. Therefore, seamlessly fusing vibration sensory
into soft robots without sacrificing flexibility and dexterity
remains an open problem [6].

To tackle this challenge, we propose a stretchable e-skin
to enable soft robot proprioceptive vibration sensing. The e-
skin is fabricated by screen print metal-polymer conductors
(MPCs), which is highly conductive, low cost, and mass-
manufacturable [7]. By utilizing the ubiquitous contact elec-
trification and electrostatic induction effect [8], we tactfully
leverage the triboelectric charge density difference between
the material of the soft robot body (silicon elastomer) and
e-skin substrate (polydimethylsiloxane, PDMS) [9] to realize
self-powered vibration sensing of the soft body. According to
the best knowledge of the authors, there has been no similar
design for soft robot’s proprioceptive vibration sensing be-
fore. To demonstrate the practicability of the e-skin, we built
STEV, a soft gripper composed of three PneuNet-type [10]
fingers with the e-skin installed. As Fig. 1 shows, the gripper
can distinguish the grains category by shaking the container
and analyzing the frequency profile from the e-skin’s output.
The classification result revealed that even a basic machine
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learning (ML) model can receive 99% accuracy in classifying
six kinds of grains. STEV is also capable of facilitating
industrial applications by its vibration response, such as
packaging quality inspection. In our test, four protective
foam filling conditions can be 100% accurately detected. The
contributions of this work can be summarized in threefold:

• A novel stretchable e-skin design is proposed to enable
soft robots with proprioceptive vibration sensory.

• A low-cost, scalable and massive producible e-skin
fabrication process is proposed, which can easily be
generalized to a broad spectrum of soft robots.

• We design experiments to demonstrate soft robot pro-
prioceptive vibration sensing applied in service and
industrial tasks, such as food ingredients identification
and packaging quality inspection.

II. RELATED WORKS

Standing at the crossroad of material science and informa-
tion technology, e-skin enables soft robots to sense external
stimuli and perceive their physical status [6]. One important
purpose of applying e-skins on soft robots is to sense the
surrounding environment and facilitate output optimal action
parameters. Towards this purpose, e-skin often appears in
different forms of tactile sensors. From resistive-based 3D
object models reconstruction [11] to capacitive array en-
abled fragile objects manipulation [4], from magnetic super-
resolution skin [12] to triboelectric material identification
fingertip [13], [14], the tactile sensor has come a long way.
Meanwhile, another major purpose of installing e-skin on
soft robots is to sense the robot’s self-state, also known
as proprioceptive sensing [15]. Although advanced sensing
techniques such as fiber Bragg gratings [16] and stretchable
optical waveguides [17], [18] can enable soft robots proprio-
ception. Yet, these solutions more or less sacrifice the overall
compliance of soft robots. Thus, in soft robotics, there is a
dilemma between proprioception and compliance. Besides,
the current exploration of soft robots’ proprioception mainly
focuses on reconstructing soft robots’ 3D configurations [19]
and 2D bending angles [20]. Perception of other self-state
properties of soft robots, such as vibration, is often neglected.

In practice, the vibration status of robots can provide
much valuable information, such as identifying the texture of
objects by slippage vibration [21], predicting the liquid prop-
erties by post-shaking oscillation [22], and identifying solid
items in different containers by contact [23]. Among various
vibration transducers, the triboelectric-based ones have high
energy efficiency [24] and ultra-wide bandwidth [25]. The
emerging triboelectric nanogenerator (TENG) invented by
Wang et al. in 2012 [26] provides a wide range of ma-
terial selection for self-powered sensors [27] and energy
harvesters [28]. And TENG combined flexible sensors, as
well as soft actuators, are also actively contributing to the
development of robotics, especially for the soft robotics
community [29], [30].
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Fig. 2. (a) Structural schematic diagram of single electrode triboelectric
sensor. (b) Equivalent circuit model of single electrode triboelectric sensor.
(c) COMSOL simulation of electric field distribution in different bending
states of a PneuNet soft finger.

III. DESIGN AND FABRICATION

Soft robots feature their embodied compliance. To mini-
mize the adverse effect on the softness of the robots, Young’s
modulus of e-skins mounted on their surfaces should be
as low as possible. Therefore, we select a metal-polymer
conductor-based elastic circuit fabrication technique [7] to
create the e-skin. The vibration sensing mechanism of the
stretchable e-skin is also elaborated on in this section.

A. Triboelectric sensing mechanism

Triboelectrification, also called contact electrification, is a
ubiquitous phenomenon between contact interfaces in various
materials. The structure of the triboelectric sensor node can
be modeled as Fig. 2(a) shows, where each sensor node
consists of a eutectic gallium-indium (EGaIn) electrode layer
and two dielectric layers made by silicone and PDMS, re-
spectively. Both electrode layer and dielectric layers have the
same length l and width w. The gap between the dielectric
layer is denoted as x(t). After contact occurs, the silicone
surface accumulates positive charges with density σ, while
the PDMS surface induces an equal amount of negative
charges. The mechanism of the sensor can be explained in
terms of Maxwell’s displacement current. With the presence
of electric field E induced by charges on the surface of two
dielectric layers, a polarized electric field P is generated be-
tween two layers. From Gauss’s law of Maxwell’s equations,
Maxwell’s displacement current density JD can be expressed
as follow in Eq. (1),

JD = ε0
∂E

∂t
+

∂P

∂t
, (1)
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Fig3. Sensor Fabrication
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Fig. 3. Fabrication process of the e-skin. (a) Add materials to a centrifuge tube to prepare the MPC ink. (b) Disperse EGaIn by probe sonication. (c)
Spread the MPC ink on the printing screen. (d) Screen printing the circuit. (e) Heating the PET substrate to evaporate the solvent of the ink. (f) Spin
coating PDMS (600 rpm, 20 s) onto the PET substrate to envelope the EGaIn micro particle trace. (g) Laser cutting the sensing part according to the
configuration of the soft finger. (h) Peeling of the PDMS layer which encapsulates the EGaIn micro particle trace. (i) Adhere the e-skin to the soft finger
and connect flexible printed circuit connectors.

where ε0 is the permittivity in vacuum. The first term
ε0∂E/∂t excites electromagnetic wave that dissipates in
space, and the second term ∂P/∂t is directly related to
the output voltage of the sensor [28], where we adopt the
equivalent capacitance circuit model of TENG (Fig. 2(b))
to elaborate [8]. Herein, C1 denotes the capacitance formed
by two dielectric layers, C2 is the capacitance between
the silicone layer and ground, C3 represents the internal
capacitance of the PDMS layer, and C4 refers to the self-
capacitance of the electrode layer. According to the law of
charge conservation, we can express V4, the voltage between
EGaIn electrode and ground at open circuit (OC) condition
in Eq. (2),

VOC = − σwlC2C3

C1C2C4 + C1C3C4 + C2C3C4
. (2)

When the soft finger vibrates, the gap between chambers is
squeezed and expanded, resulting in capacitance C1 changes.
Here, C1 is modeled as a parallel plate capacitor so that we
can write the relationship between C1 and the gap width x(t)
as Eq. (3),

C1 =
ε0wl

x(t)
, (3)

where ε0 represents the permittivity in the air and x(t) is the
distance between dielectric layers. Combining Eq. 2 and Eq.
3, the relationship between the output voltage and the gap
distance between dielectric layers can be established.

Based on the above theoretical analysis, we simulate
the electric field distribution of a soft robotic finger of
STEV in different bending states by COMSOL multiphysics.
According to the datasheet [31], the charge density of PDMS
and silicon elastomer is set to -0.54 µC/m2 and 0.54 µC/m2,
respectively. The dynamics model of the soft finger is also
considered in the simulation. The Ogden hyperelastic model
for soft materials is applied to simulate large-scale deforma-
tion in bending [32]. Fig. 2(c) shows the potential difference
on both sides of the wall. Record the change of potential

Fig4. Sensor Stretchability (scale bar 1cm)
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Fig. 4. Tensile testing curve of the stretchable e-skin.

difference will achieve the vibration’s proprioception. Based
on this concept, we fabricate a kirigami structured stretchable
e-skin to deploy on a pneumatic-driven soft robot.

B. Fabrication of the e-skin

The conductive substance of the elastic circuit, eutectic
gallium-indium (EGaIn), is a type of non-toxic liquid alloy
widely used in biomedical and wearable applications. Since
EGaIn has extremely high surface tension (0.63 N/m [33])
and weak affinity to polymer or silicone, it is nearly impos-
sible to direct pattern a long-standing circuit on a silicon soft
body. Before patterning the circuit, MPC ink is prepared to
reduce surface tension and boosted the polymer affinity of
EGaIn. As Fig. 3(a-b) indicates, 3 g EGaIn and 0.5 ml 1-
decanol are added into a centrifuge tube, and then the mixture
is dispersed by an ultrasonic probe (JY92-IIN) for three
minutes in ice-water bath. The sonication process can break
the EGaIn chunk into 2 µm diameter microparticles [7]. The
microparticles’ small diameter enables MPC ink to readily
pass through the printing screen mesh used in the following
step, while the 1-decanol solvent increases the ink’s affinity
to the PET substrate film.
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Screen printing is an efficient patterning technique adopted
in industry, it can massively reproduce patterns with fine
details. Here, we adopt the screen printing technique shown
in Fig. 3(c-e) to pattern the elastic circuit. First, PDMS
releasing agent is sprayed on a clean PET (polyethylene
terephthalate) film to ensure the stretchable circuit can be
easily detached from the PET substrate in the following
steps. Before printing, we use a rubber scraper to evenly
spread the liquid metal ink onto the screen mesh and place
PET substrate film underneath the printing screen. Then, we
pull the scraper to print the circuit on the PET substrate.
Finally, the printed PET substrate will be placed in a 70 °C
oven for 10 minutes to evaporate 1-decanol. Note that the
circuit’s color changes during the thermal processing, from
the MPC ink’s grey appearance to EGaIn micro particles’
silver metallic luster.

After the patterning, the circuit is transferred from non-
stretchable PET film to stretchable PDMS film by spin coat-
ing. Two pars of PDMS precursor are mixed by defoaming
mixer (THINKY ARE310) for 45 s. Then, use a spin coater
to evenly spread the mixed PDMS precursor on the PET
film with the dry circuit. By adjusting the spinning speed
to 600 rpm and spinning time to 20 s, the fabricated e-skin
reaches 0.1 mm ultra-thin thickness. Cured PDMS is cut into
a branch-and-leaves shape by a laser cutter and peeled from
the substrate, as the inlet photograph in Fig.4 shows. The
Young’s modulus of the as-fabricated ultrathin stretchable e-
skin reached 1.52 MPa (Fig.4), which is negligible to the
soft robot’s overall compliance. Finally, we lead out wires
and adhere the e-skin to a PneuNet soft robotic finger to
finish the assembly. The fabrication cost of each e-skin
with lab materials only needs 0.5 US dollars. In massive
manufacturing, the already fairly small cost will continue to
decrease due to scale merit.

IV. EXPERIMENT

To evaluate the vibration sensing capability of STEV, we
have systematically devised three experiments: (1) Compare
vibration sensing results from the e-skin and the commercial
IMU. (2) Identify a bottle of grains with the same mass by
oscillation. (3) Evaluate the packaging quality by oscillation.

A. Vibration sensing performance comparison

Referring to the method proposed by Li et al. [5], we
attached an IMU module (MPU 9250) at the bottom of a soft
finger installed the e-skin as a reference for vibration sensing.
The experiment test bench is depicted in Fig. 5a, where
the triboelectric voltage output of the e-skin is recorded
by NI 9220 with 1 GΩ resistor connected in parallel for
input impedance matching. The oscillation of STEV is
realized by a linear motor (LinMot, H01-37x166/280) that
performs 1 Hz reciprocating motion (40mm displacement,
1 m/s2 acceleration, and 0.5 m/s maximum speed). It can
be seen from Fig. 5b-c that the 1 Hz base resonance mode
mostly dominates the triboelectric signal. The smaller high-
order harmonics in triboelectric signal is due to the intrinsic
capacitance of the triboelectric sensor and the external input

Fig5. Comparison with IMU scalebar: 2cm 
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Fig. 5. (a) System set-up for the sensor’s reading comparison with IMU.
(b) Time domain comparison. (c) Frequency domain comparison.单栏图宽度 12.6cm
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Fig. 6. Six single-ingredient grains and nine dual-ingredients grains.

matching resistor forms a natural low-pass filter, which is
highly beneficial for practical applications [34].

B. Grain identification

To illustrate that STEV can capture subtle vibration dif-
ferences, we designed an experiment that classifies a bottle
of different grains (Fig. 6) with the same mass by simply
shaking them. The air pressure that drives STEV to ensure
securely holding the bottle is maintained at 50 kPa during
actuation by Cordis closed-loop pressure control valve. And
the shaking is achieved by the same linear motor with
1.3 Hz reciprocating motion (80 mm displacement, 4 m/s2

acceleration, and 1 m/s maximum speed).
In each signal acquisition cycle, the soft gripper shakes a

bottle filled with 100 g grains for 10 times in 15 s. The
dataset of each object class contains 10 acquisitions. For
each class, we split the data from six channels into 600
samples and perform principal component analysis (PCA)
to extract the principal oscillation component. To further
enhance data efficiency, Fourier transformation is conducted,
and the obtained frequency domain components are truncated
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Fig6. Signal processing pipeline
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Fig7. Filling State Classification
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to 0 to 10 Hz. Finally, the frequency domain samples are
randomly divided into 400 training samples and 200 testing
samples to train classification models. The data processing
pipeline is shown in Fig. 7.

Here, we adopt classic machine learning methods to
illustrate the expressing ability of the data in three set-
tings: (i) 6 single ingredient grains, (ii) 9 dual-ingredients
grains, and (iii) 15 combinations with single and double
ingredients grains (Fig. 6). All the models are implemented
by the classification learner toolbox of MATLAB. Due to
the well-designed sensors and high data efficiency, without
computationally expensive deep learning methods, the classic
subspace k-nearest neighbors algorithm (KNN) [35], and
kernel support vector machine (SVM) [36] can achieve excel-
lent accuracy (Table I) in three granular object identification
tasks.

TABLE I
PERFORMANCE COMPARISON IN CLASSIFICATION.

ML Method 6 grains 9 mixtures 15 together Filling
KNN 93.0% 80.9% 76.8% 99.8%
Subspace KNN 99.4% 97.4% 97.3% 100.0%
Linear SVM 98.2% 84.9% 81.3% 86.8%
Kernel SVM 99.9% 97.8% 96.2% 99.4%

C. Package quality inspection

In the logistics industry, cushioning pellets are used to
prevent the vibration and collision of fragile goods inside
their package during transporting. Hence, we designed a
package quality inspection experiment to demonstrate a
potential industry application for soft robots’ proprioceptive
vibration sensing. The experiment uses the same soft gripper
set-up with the grain classification task, while the grain is
substituted into expandable polyethylene (EPE) pellet and
a 100 g balance weight. The level of cushion pellet filling
determines the packaging quality. During the oscillation
motion, it is intuitive that the higher filling level will reduce
the center of gravity shift. This situation can be directly
observed by the frequency profile changes. As shown in
Fig. 8, the normalized amplitude of the second spectrum peak
gradually surpasses the first peak with four increased filling
levels. The subspace KNN classification model also achieves
perfect results in determining four filling conditions. (Refer
to Table I).

V. CONCLUSION AND DISCUSSION

This paper proposes a novel e-skin to enable soft robot
proprioceptive vibration sensation. The e-skin is fabricated
by the massively producible screen printing stretchable liquid
metal circuit, and robots equipped with the e-skin can easily
distinguish subtle vibration differences. Our experiments re-
vealed that even traditional classifiers can accurately classify
the vibration signal from shaking different granules and
evaluate the packaging quality by their vibration responses.
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Nevertheless, some features of our e-skin design have
not been thoroughly investigated, such as independently
leading-out signals from each sensory leaf of the e-skin
to analyze multi-point vibration status. In the future, many
applications of soft robots’ closed-loop control, dexterous
manipulation, and intelligent recognition tasks can leverage
proprioceptive vibration sensation to realize. For example,
suppress undesired vibration by neuroadaptive control, detect
object slippage during manipulation, and discriminate liquid
substances by shaking.
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