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ABSTRACT
The development of the human-machine interface (HMI) is en-
deavored to find effective approaches to interact with machines
by applying emerging technologies. Triboelectric nanogenerator
(TENG) can convert mechanical stimuli to electricity, which not
only shows great potential in sensing but also is widely used in vari-
ous HMI applications. This paper proposed a TENG-based hexagon-
fractal touchpad (HTPad) system using two channels to realize 18
sliding patterns from 3 different modes and a signal recognition
module. A one-dimensional convolution neural network (1D CNN)
model is proposed for the recognition of the sliding direction signal
with 96.5% accuracy, and handwriting digit signals collected by
the touchpad can be recognized with a modified model with 99%
accuracy. The proposed TENG-based hexagon-fractal touchpad is
easy to fabricate, scalable, and with high sensitivity. Furthermore,
the recognition model can serve as a unified platform for differ-
ent recog.nition tasks with little computational cost, which reveals
great potential in HMI applications.

CCS CONCEPTS
•Human-centered computing→Ubiquitous andmobile com-
puting; •Computingmethodologies→Machine learning; •Com-
puter systems organization→ Embedded and cyber-physical sys-
tems.

∗Wenbo Ding is the corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
UbiComp-ISWC ’21 Adjunct, September 21–26, 2021, Virtual, USA
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8461-2/21/09. . . $15.00
https://doi.org/10.1145/3460418.3480408

KEYWORDS
Triboelectric sensor, deep learning, human machine interface
ACM Reference Format:
Xu Yang, Jihong Yin, Zihan Wang, Ziwu Song, Jian Song, and Wenbo Ding.
2021. HTPad: Hexagon-fractal TENG Pad for Scalable Touch Control. In
Adjunct Proceedings of the 2021 ACM International Joint Conference on Per-
vasive and Ubiquitous Computing and Proceedings of the 2021 ACM Inter-
national Symposium on Wearable Computers (UbiComp-ISWC ’21 Adjunct),
September 21–26, 2021, Virtual, USA. ACM, New York, NY, USA, 6 pages.
https://doi.org/10.1145/3460418.3480408

1 INTRODUCTION
As an essential part of the fast development Internet of Things (IoT),
efficient and intuitive human machine interface (HMI) is becoming
more and more significant [2] [1] [5] [15]. Amongmany approaches
for users to send instructions to the machine, handwriting or touch-
control is the most intuitive one for human’s dexterous hands. This
leads to a specific need for touchpad. Traditional touchpads have
two categories, resistive and capacitive. For the resistive touchpad,
the contact finger position is tracked through the change of the
resistance on different positions of indium tin oxide (ITO) film. The
capacitive touchpad relies on monitoring the change of the charge
distributions on the electrodes caused by the induced charge on hu-
man’s fingers [6]. However, the resistive touchpad needs pressure
to respond to the sliding movement, leading to a lower sensitiv-
ity. The capacitive touchpad requires multiple channels to track
the contact point and it is susceptible to temperature, mechanical
wear, and tear. In conclusion, these kinds of touchpads both have a
shortage of high-power consumption, low resolution and restricted
extensibility [3]. Besides, devices with low cost and high flexibility
are also needed in the handwriting touchpad system.

The first triboelectric nanogenerator (TENG) was invented by
Wang’s group in 2012 [4]. It can be applied as a self-powered sensor
because it is sensitive to mechanical changes [17]. There are four
basic modes of TENG: vertical contact-separation mode [11], lateral
sliding mode [9], single-electrode mode [10] and freestanding tribo-
electric-layer mode [8]. Recently, there are many TENG-based HMI
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Figure 1: System architecture, a. signal flow of HTPad, b. arrangement picture of HTPad.

devices were designed. Yun et al. proposed a transparent touchpad
with a 7×7 electrodes array that can track the position of the move-
ment and recognize the digit sliding [16]. This work could locate
the position of the finger with high precision and recognize com-
plex handwriting. However, it required a large number of channels.
Shi et al. designed a triboelectric interacting patch with only four
sensing electrodes arranged around splitting ring structure which
could recognize the different mechanical movement e.g., tapping,
sliding, and identify different users [14]. Qiu et al. designed a self-
powered remote-control disk based on Gray code for smart home
control and authentication [12]. This work proposed a Gray code
inspired encryption method with only two channels. However, it
could not recognize complex handwriting. Shi et al. proposed a
bio-inspired spider-net-coding interface which could detect multi-
directional sliding signals with only one electrode, independent of
different sliding force and speed [13]. They utilized a net structure
to successfully reduce the number of channels. However, it lacked
the ability of complicated handwriting tracking. Therefore, its appli-
cation situations were limited. Lee et al. proposed a self-cleanable,
transparent, and attachable ionic communicator which can be em-
bedded in thimble-type and put in five fingers to achieve real-time
communication [7]. However, a complex layout was required to
accomplish handwriting recognition. Also, there remains a critical
need for a touchpad system that combines sliding tracking and
sliding gesture recognition.

Herein, we propose a TENG-based hexagon-fractal touchpad
with only two kinds of electrodes arranged alternately for multi-
directional sliding recognition and handwriting digit recognition.
Compared with other works, our HTPad adopts a commercially
printed circuit board (PCB) which is suitable for massive produc-
tion. Besides, the innovative hexagonal structure not only enables
high resolution but also supports scalable design for customized
applications. Also, a one-dimensional convolution neural network
(1D CNN) is proposed to recognize signals from different sliding
motions and the experimental results show that the accuracy of the
sliding directions recognition reaches over 96% and the accuracy of
handwriting digit recognition reaches 99%. The HTPad only has
two sensing channels which can reduce the computational com-
plexity and front-end circuit electronic hardware cost significantly.
This work addresses the existing problem that the number of the
sensing channels limits the resolution of the touchpad by a novel
hexagon-fractal design. Also, the proposed 1D CNN network can
not only be used to recognize the sliding direction signals and hand-
writing signals of our HTPad but also be considered to be applied
to other similar tasks. Moreover, the TENG-based hexagon-fractal

touchpad is suitable for massive fabrication and the proposed recog-
nition model has high accuracy with a high level of robustness and
cost-efficiency. The whole system is expect to play an important
role in HMI in IoT and other applications.

2 SYSTEM DESIGN AND OPERATION
PRINCIPLE

In this section, the designed TENG-based hexagon-fractal touch-
pad with a triple-layer structure is demonstrated. Basic working
principles and experimental situations are therefore illustrated to
introduce the first component of the whole HTPad system.

2.1 System Design
TheHTPad structure is illustrated in Figure 1(a). The TENG-based
hexagon-fractal touchpad consists of three layers: the bottom layer
is made of FR-4 baseboard, the middle layer using copper as elec-
trode and conductor trace, the top layer is transparent fluorinated
ethylene propylene (FEP) film. The thickness of the baseboard, cop-
per electrode and FEP film is 1.6mm, 35um, and 40um respectively.

There are two kinds of electrodes with different patterns as the
basic units are arranged alternately on the board. Different elec-
trodes of the same channel are connected by the copper trace. The
size of each electrode is approximately 10mm ×10mm and the units
can be scaled up and down collaboratively to adapt to different
requirements. TheHTPad illustrate in Figure 1(b) contains 24 elec-
trodes within 15.80cm × 13.39cm.

2.2 Operation Principle
The working principle of the HTPad is based on the single-elec-
trode mode of TENG. Because of triboelectrification and the differ-
ent tendancies to gain or lose electrons between the hand and FEP
film, the electrostatic charges will be produced on the surface of
the electrode during contact. The charge distribution on the FEP
film will change and the current will be generated between the
electrode and the ground when the finger slides over the surface
of the electrode. A load resistor is connected in series between the
electrode and the ground to obtain a larger amplitude and more
stable output signals. The voltage on the load serves as the output
signal.

Fractal design is adopted for electrodes to achieve a scalable
touchpad with only two signal channels. The outputs of the three
modes are shown in Figure 2. The blue geometric shapes are elec-
trode1 (E1) and the red ones are electrode2 (E2). Both E1 and E2
are composed of a large hexagonal electrode area in the center and
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Figure 2: Three basic sliding patterns and the sample measured data

some narrow strips around the center. The size of the center area
of E1 and E2 are the same and the width of the narrow strips is also
the same. The ratio of the width of the narrow strip to the diameter
of the hexagon is almost 1:12 to make a significant distinction be-
tween the two signals. Therefore, when the finger with glove slides
over the narrow electrodes and hexagon electrodes, the different
amplitude and pulse width on the load resistor will be generated
accordingly.

Different sliding modes are proposed to recognize the different
signals generated from the HTPad. There are three types of basic
modes on the HTPad design, mode0 (M0), mode1 (M1) and mode2
(M2), as shown in Figure 2. Each mode consists of a central block,
surrounded by six blocks, which enables totally 18 sliding direc-
tions. As shown in Figure 2, the numerical mark “0” means the
sliding action does not pass between the electrode areas, "1" and "2"
represent the signals generated by sliding over the large hexagon
electrode, while the underlined “1” and “2” represent the signals
generated by sliding over the narrow strip.

3 DATA ACQUISITION, PROCESSING, AND
RECOGNITION

In this section, we introduced a systematic signal acquisition, pre-
processing, and recognition pipeline of the proposed HTPad sys-
tem and evaluate the performance of our system on direction recog-
nition.

3.1 Data Collection and Pre-processing
Each of the two channels of the HTPad is grounded through a
100MΩ resistor, and the corresponding voltage is measured by the

NI9223 DAQ module and LabVIEW system at the sampling rate of
1 kHz.

To eliminate the influence of high-frequency environmental
noises to the signal, we adopt the finite impulse response (FIR)
equiripple low-pass filter with 50Hz stopband setting. However, the
signal amplitude from different users’ sliding could be diverse. To
increase the robustness meanwhile reduce the computational cost
of the recognition model, normalization is utilized to map the data
into the same interval (0,1).

The original data has two channels. Since the sampling frequency
of ADC is 1 kHz and the sampling time interval is standardized
to be 1.5 seconds, the number of original data points in the time
domain is 1500. Further data augmentation methods of shifting the
pre-processed data in temporal dimension for various time intervals
forward and backward are used for better recognition performance.

3.2 1D CNN Algorithm
For time series classification tasks, one-dimensional convolution
neural network (1DCNN) have attracted great interest because of
its ability to capture local patterns and combines feature extraction
and classification and the recognition performance is improved
compared with traditional feature extraction methods. Also, the
one dimensional CNN (1D CNN) is very efficient for extracting
features from fixed-length segments, where the location of the
feature within the segment does not affect the classification result.

Here, a 1D CNN model is proposed for two-channel direction
recognition based on HTPad signals. The program is developed
in Python using Keras library. The proposed network structure is
shown in Figure 3, along with a sample flow of input and output
shape marked below each block. The proposed neural network
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Figure 4: Confusion matrix of direction recognition, a. on the training set, b. on the testing set

consists of a sequential model of 1D convolution layers, 1D max-
pooling layers, global average pooling layer, dropout layers, and
fully connected layers. The working principle of these layers is as
follows.

• 1D convolution layer: the 1D convolution layers in the pro-
posed model have a uniform kernel size of 10 with a stride
of 1 and none zero-padding, and the output channel num-
ber is determined by the number of the filters of each 1D
convolution layers respectively.

• 1D max-pooling layer: the 1D convolution layers in the pro-
posed model has a uniform kernel size of three. For each
input featuremap, 1Dmax-pooling layers selected the largest
feature value within the given kernel size. The output of 1D
max-pooling layer will have a reduced size of one-third of
the input spatial size while keeping the channel number
unchanged.

• Global average pooling layer: the global average pooling
layer takes the average of each feature value in each channel
of the input feature map and turns the feature map into a
feature vector.

• Dropout layer: dropout layers are applied to prevent the
network from overfitting. The feature vector extracted by
1D convolution layers and pooling layers are placed as the
input to the fully-connected layers after a dropout probability
of 0.5.

• Fully-connected layer: the fully-connected layer with the ac-
tivation function of softmax acts as the classifier. It calculates
the probability of each class, given the long input feature
vector. The class with the highest probability is determined
to be the classification result.

The forward path of the proposed 1D CNN model consists of
four convolution blocks, each block followed by a pooling layer and
a fully-connected layer as the classifier. Each of the first and second
convolution blocks is composed of two convolution layers, and
each of the third and fourth convolution blocks consists of three
convolution layers. The 1D CNN model with the chosen structure
ideally identifies the curve features, the frequency characteristics
and the phase difference between the two channels, which act as
the key features used for classification.
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During the training progress, 80% of the total data is used as the
training set and 20% of the total data are used as the testing set.
To prevent overfitting, one batch normalization layer is implanted
after each 1D convolution layer. The cross-validation strategy is
also used. During each training epoch, 20% of the training data
are used for cross-validation. The validation accuracy is monitored
during training and early stopping of 5 epochs of non-increasing
validation accuracy is utilized. The model was trained offline using
an Adam optimizer configured with a manually-adaptive learning
rate, running with a GeForce RTX 3090 GPU.

3.3 Performance Evaluation
The acquired and pre-processed data has a shape of 1500 by 2.
The total number of the input training set is 2359, consists of all
18 directions. The directions are encoded for the convenience of
recognition, and the encoded marks are shown in Figure 2. The
training and testing results are shown in Figure 4(a) and Figure 4(b).
After manual adjustments of the learning rate, the testing accuracy
reaches 96.5%, indicating that the proposed model can achieve high
classification accuracy and reliable direction recognition results.

4 APPLICATION: HANDWRITING DIGIT
SIGNAL RECOGNITION

In this section, a handwriting digit signal recognition system is
introduced based on the identical data acquisition and signal recog-
nition pipeline. Handwriting digit signals based on theHTPad can
be considered as a series of direction signals. Therefore, handwriting
digit signals can be collected by the HTPad and be recognized by
adjusting the recognition model for this specified task theoretically.

4.1 Experiment Settings
The data acquisition progress is similar to the data acquisition of
direction signals, and the only difference is that the sampling time
window interval is extended to 3 seconds. The sample measured
handwriting signals are shown in Figure 5. Then, the collected
data are filtered, normalized, and augmented with the same pre-
processing strategy as the input to the proposed 1D CNN model.
The input shape is uniformly set to be 3000 by 2 and the batch size
is set to be 100 samples. Compared to the direction recognition
system, the number of classes of the final classifier of the 1D CNN
model is changed from 18 to 10. And other training processes follow
the settings of the direction recognition system.
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Figure 5: The sample measured handwriting data.

4.2 Performance Evaluation
Each class of the 10-class (0-9) handwriting digit data has 2391
samples. The training and testing confusion matrices are shown
in Figure 6(a) and Figure 6(b) respectively. The testing recognition
accuracy raises quickly to 99% within 100 training epochs. These
results not only show the model’s precision in classifying hand-
writing digits but also shows robustness on various handwriting
styles of different people and a great potential to be a uniform
handwriting signal recognition processing model.
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Figure 6: Confusionmatrix of handwriting digit recognition,
a. on the training set, b. on the testing set

5 CONCLUSION
In summary, a TENG-based hexagon-fractal structure touchpad is
proposed to recognize multi-directional sliding signals from three
basic modes and handwriting digit signals. The special structure of
theHTPad consists of two sensing electrodes which are composed
of a large hexagonal electrode area in the center and narrow strips
around the center. TheHTPad can be extended by adding electrode
units repeatedly and enlarging or shrinking the electrodes collabo-
ratively. We also designed a 1D CNN model to distinguish different
sliding directions and it can achieve reliable recognition results
with low computational complexity, which shows a huge potential
in trajectory tracking, gesture interface, instruction collection, and
can be widely applied in HMI and other applications of the IoT.
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