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A B S T R A C T   

Recent advances in human-machine interface (HMI) lead to a renewed interest in creating intuitive and 
immersive interaction. Here, we designed a simple-structured and high-resolution bending angle triboelectric 
sensor named bending-angle triboelectric nanogenerator (BA-TENG) to construct a glove-based multi-dimen
sional HMI. With the assistance of a customized print circuit board (PCB), the glove-based HMI exhibits high 
sensitivity and low crosstalk in real-time multi-channel finger motion sensing. The signal-to-noise ratio (SNR) is 
improved by 19.36 dB. By systematically extracting and analyzing the multi-dimensional signal features of the 
BA-TENG, intuitive multi-dimensional HMIs were realized for smart-home, advanced robotic control, and a 
virtual keyboard with user recognition functionality. The classification accuracy of the virtual keyboard for seven 
users reached 93.1% by leveraging the advanced machine learning technique. The proposed BA-TENG-based 
smart glove reveals its potential as a solution for minimalist-design and intuitive multi-dimensional HMI, 
promising in diversified areas, including the Internet of things (IoT), assistive technology, and intelligent 
recognition systems.   

1. Introduction 

With the popularization of computers, machines, and robotics in 
recent decades, human-machine interfaces (HMIs), serving as bridges 
between human and machines, have demonstrated great significance 
and received tremendous attention. The classical HMIs, such as joy
sticks, keyboards, and touchpads, could meet the requirements in most 
scenarios but still have their limitations, especially when a more natural 
and intuitive manipulating manner is needed for virtual reality (VR) and 
augmented reality (AR). In this context, new types of HMIs that directly 
express human intentions are emerging as essential alternatives by 
leveraging other human features [1]. For instance, the electromyogram 
(EEG) [2], electromyography (EMG) [3], voice [4], and facial expression 
[5]. Among them, the HMI based on finger motions has attracted sig
nificant interest from the community due to its high precision and 
multiple degrees of freedom control [6–8]. Specifically, the finger mo
tion, mainly from finger phalanxes, can be detected by glove-based HMI 
and projected into different machine commands, enabling immersive 
control in entertainment, healthcare systems, and manufacturing [9,10]. 

To this end, various sensors are customized to collect such information, 
for example, the inertial measurement unit (IMU) [11], resistive sensors 
[12,13], and capacitive sensors [14–16]. These sensors provide high 
accuracy in detecting finger motions [17,18], yet various challenges 
remain to be solved, such as temperature dependence, complicated 
fabrication, and low yields [11,19]. Besides, for low-weight and 
long-term connectivity, the power consumption of the HMI should also 
be optimized and minimized at the system level [19]. 

Triboelectric nanogenerator (TENG), as an emerging mechanical-to- 
electrical conversion technique, has been recognized as an appealing 
method to construct low-power or even self-powered sensors due to its 
nature of coupling contact electrification and electrostatic induction 
[20–23]. Moreover, thanks to the low cost, variety of material choices, 
and simple structure, TENG-based sensors have been widely applied to 
realize HMI functions in the form of keyboards and touchpads [24–31]. 
Furthermore, the unique working mechanism of TENG enables it to 
perceive subtle finger motions, making it an ideal candidate for the 
glove-based HMI [32–39]. On this basis, wearable HMI is fulfilled with 
the help of TENG, including robot control [8,25,36], the Internet of 
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things (IoT) [38,40], and hand gesture recognition [41–47]. However, 
two significant challenges exist in the current work. On the one hand, 
since most of the research utilizes only the limited feature (i.e., the 
TENG ’s output voltage) to characterize finger motions, it is sometimes 
farfetched to characterize finger’s continuous movements and diversi
fied gestures with a single sensor[8,19,44,48–50]. In this context, 
extreme complications in the structure and electrode design are usually 
introduced in the related work [51–53], requiring extra power con
sumption in signal processing and hindering the users from manipu
lating HMI intuitively and effectively. On the other hand, crosstalk in 
multi-channel sensing needs to be better solved. Since TENG essen
tially has high resistance and a small current, coupling effects may occur 
between adjacent channels through the capacitance of the 
analog-to-digital converter (ADC) [8]. To realize real-time multi-
channel HMI, these constraints need to be overcome. 

Herein, we report a wearable glove-based system for real-time 
intuitive multi-dimensional HMI. With the assistance of this system, 
analog triboelectrification signals generated by finger motions can be 
converted to the digital domain, as shown in Fig. 1a. Our system shows 
good sensitivity, low crosstalk, and intuitive manipulating experience. 
The real-time signal-to-noise ratio (SNR) was improved by 19.36 dB 
using the customized glove-based system. To illustrate the capabilities of 
the glove-based HMI, multi-dimensional signal features are extracted 
from the bending angle triboelectric nanogenerators (BA-TENG) to 
achieve light control (the bending angle and speed), advanced robotic 
hand control (the bending angle, speed, and hold time), and a virtual 9- 
digit keyboard with user identification (multi-dimensional features), as 
shown in 1a. A total of 350 keystroke dynamics for a password that 
contains multi-dimensional signal features [54] were generated by the 
virtual keyboard. The glove-based HMI demonstrates a high recognition 
rate of 93.1% against 7 different users by leveraging a machine learning 
algorithm. This work exhibits promising applications of the 
BA-TENG-based smart glove towards multi-dimensional HMIs, including 
smart IoT, assistive technology, and intelligent recognition systems. 

2. Results and discussion 

2.1. Glove-based system 

The glove-based system consists of BA-TENG and a wireless 
customized PCB, as shown in Fig. 1b and Fig. S1. Owing to the simple 
structure design and the use of two soft and flexible materials, poly
dimethylsiloxane (PDMS) and silicone rubber, the BA-TENG can 
conform to the skin of human fingers when detecting finger motions. BA- 
TENG converts finger motions into triboelectric signals. The wireless 
customized PCB worn on the wrist realizes signal conditioning, pro
cessing, and wireless transmission through available integrated circuit 
components, as shown in Fig. 1b. The numbered boxes indicate the lo
cations of the integrated circuit components that correspond to the 
functions in the block diagram of the glove-based system in Fig. 1c. 
Fig. 1c provides an overview of the process flow of signal conditioning. 
The analog signal acquired in each BA-TENG is independently amplified 
by a multi-channel trans-impedance amplifier. Then, the amplified sig
nals experience signal processing, ADC conditioning, wireless trans
mission and finally received by a customized terminal display. The 5- 
channel trans-impedance amplifier independently amplifies the tribo
electric output from different BA-TENGs and avoids the crosstalk from 
adjacent channels. A commodity microcontroller integrated with an 
ATmega 328P microprocessor and nRF24L01+ wireless communication 
module realizes computational and serial communication functions. Our 
glove-based multi-dimensional HMI system adopts an arch structure BA- 
TENG, with minimal system design and sensor layout. Besides, the sys
tem achieves sensitive motion detection, crosstalk avoidance, and multi- 
dimensional human-machine interaction. Four sets of signal features can 
be extracted from BA-TENG and projected to multi-function robotic 
control. As summarized in Table S1, compared with other works that 
only use the limited signal features (signal amplitude and peak 
numbers), our system can control the robotic hand in grabbing level, 
speed, and holding time, with intuitive logics between finger motions 
and the commands. Additionally, the virtual keyboard based on the 
system offers a new version in human-machine interaction, which has a 
relatively high identification accuracy for seven users, as presented in 
Table S2. 

Fig. 1. (a) Schematic illustrations of the BA-TENG-based intuitive HMI for the intelligent IoT, assistive technology, and a virtual keyboard with user identification. 
(b) Photograph of the glove-based HMI components, including BA-TENG array and a wireless printed circuit board (PCB). The dashed boxes indicate the location of 
the integrated components. (c) Circuit diagram of signal flow in real-time HMI, from the acquired analog signals to the digital signals. 
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2.2. Structural design and working mechanism 

A simple-structured, easy to fabricate, self-powered, and high- 
resolution BA-TENG is developed to input front-end information into 
the circuit system. As illustrated in Fig. 2a, the BA-TENG comprises two 
pieces of commercially viable materials, PDMS and silicone rubber, 
serving as negative and positive materials due to their different restraint 
capability of electrons. The detailed fabricating process of the BA-TENG 
is presented in Fig. S2 and Experimental section. The softness and 
flexibility of the two materials enable the BA-TENG to fit the finger 
surface closely. As a result, BA-TENG offers precise motion detection and 
better manipulating experience than the sensors that tend to separate 
from the finger in the bending-release cycle [34,35,55]. The embedded 
Cu mesh serves as an electrode (Fig. S3), which offers good flexibility 
under the deformation of the BA-TENG [56]. Bending deformation of the 
BA-TENG brings about a change in the contact area between PDMS and 
silicone rubber in a bending-release cycle. Since these two materials 
have different restraint capabilities of electrons, a triboelectric potential 
builds up at the interfacial region [18,22,56] (the silicone rubber be
comes positively charged while the PDMS becomes negatively charged, 
as schematically shown in Fig. 2a). A detailed testing condition and 

working mechanism of the BA-TENG are presented in Fig. S4. To visu
alize the stress and potential distribution in a bending-release cycle, 
COMSOL Multiphysics was used to show the deformation of the 
BA-TENG at the bending angle of 80◦ and 0◦, respectively, corre
sponding to different stress distributions, as shown in Fig. 2b and Fig. S5. 
In the characterization, the bending angle of the BA-TENG indicates its 
force conditions. The simulation details are presented in Note S1. 

2.3. Mechanical and electrical properties characterization 

To investigate the viability of the BA-TENG in detecting finger mo
tions, its mechanical and electrical properties is quantitatively charac
terized using an actuating motor to offer cyclic force. Fig. 2c compares 
the experimental data on the BA-TENG’s sensitivity measurement in a 
bending angle range from 40◦ to 100◦ at a frequency of 2 Hz, covering 
that of the human finger in a normal bending range. The short-circuit 
current (Isc) of the BA-TENG sees a nearly linear increase from 40◦ to 
100◦, corresponding to 22.1–138.4 pA, respectively. As shown in 
Fig. 2d, the corresponding open-circuit voltage (Voc) at 40◦, 50◦, 60◦, 
70◦, 80◦, 90◦, and 100◦ is 0.33 V, 0.74 V, 1.21 V, 1.62 V, 1.95 V, 2.27 V, 
and 2.52 V, respectively. The insert shows the enlarged view of the BA- 

Fig. 2. (a) Schematic illustration of the working mechanism of the BA-TENG. (b) Stress and potential distribution of the BA-TENG at the bending angle of 80◦. (c) 
Short-circuit current (Isc) against bending angles. (d) Open-circuit voltage (Voc) against bending angles. Insert, Voc of each bending angle from 50◦ to 55◦. (e) The 
profiles of Isc and Voc. (f) Frequency dependence of the output current at the bending angle of 50◦. Insert shows the bending state of the BA-TENG. (g) Mechanical 
durability test for 8000 continuous bending cycles. (h) Dependence of the current, voltage, and power output on the external load resistance. (i) The output of the BA- 
TENG with different bending angles and sizes. 
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TENG’s sensitivity ranging from 55◦ to 60◦, indicating good angular 
resolution of the BA-TENG. The sensitivity is defined as S = ΔV / Δθ, 
where ΔV is the relative potential change and θ is the bending angle. A 
high bending angle resolution (0.04 V/◦) is obtained in the wide strain 
range (40◦ ~ 100◦). Detailed current and voltage profiles at various 
bending angles of 40◦, 60◦, 80◦, and 100◦ are presented in Fig. 2e, 
indicating a stable and uniform output signal generated by the proposed 
simple-structured BA-TENG. Besides, the current dependence on the 
bending frequency at a bending angle of 50◦ is shown in Fig. 2f. The 
output voltage is 67.4 pA, 68.1 pA, 61.7 pA, and 59.1 pA at 1 Hz, 2 Hz, 
4 Hz, and 6 Hz, respectively. Additionally, Fig. 2g presents the summary 
statistics for the mechanical durability of the BA-TENG. The output 
current remains relatively stable during 8000 continuous bending- 
release cycles at 50◦. The result indicates good mechanical durability 
of the BA-TENG, which is beneficial in the long-term application. 
Furthermore, the output power of the BA-TENG was investigated with a 
wide range of external load resistances, as illustrated in Fig. 2h. The 
voltage amplitude increases with the load resistance, while the current 
follows a reverse trend. The instantaneous peak power maximizes at a 
load resistance of 1 GΩ, corresponding to a peak power of 37.5 pW. We 
also studied the output of the BA-TENG dependent on the device area. As 
shown in Fig. 2i, statistical tests reveal that the bending angle sensitivity 
could be obtained in various device sizes. The output voltage is pro
portional to the device size of BA-TENG. 

2.4. Real-time triboelectric signal acquisition 

The multi-channel real-time signal acquisition is usually performed 
using a single ADC and applies sequential scanning. However, with a low 
output current and high impedance, sequential scanning of multi- 
channel TENG input via a single ADC can lead to crosstalk and high 
noise in the signal. The trans-impedance amplifier (TIA) has recently 
been adopted in nanosensors to address these issues [57–59]. Fig. 3a 
illustrates the electronic design of the single-channel TIA (R1 = R2 = R3 
= 10 kΩ. R4 = 10 GΩ. R5 = 500k. C1 = C2 = C4 = 10 μF. C3 = 1 pF.), 
which converts the current input to the voltage output, 

Vout =
Vcc

2
± Iin × R4.

As shown in Fig S6, the customized PCB can effectively avoid 
crosstalk, and the SNR is improved by 19.36 dB in real-time multi- 
channel finger motion sensing. To eliminate the effect of background 
noise and extract the signal features, the triboelectric signal in the 
receiving end is filtered, as presented in Fig. 3b. The motions of the 
human finger contain a wealth of information and can be developed for 
intuitive multi-dimensional HMI. However, current work focuses solely 
on the signal amplitude or peak number, as shown in Table S1, and 
defines it to various human-machine interaction commands. As a result, 
the functionality of HMI is limited while aggravating the system 
complexity and the uncomfortableness of users [51]. Herein, we extract 
four groups of the signal features of the BA-TENG, valley amplitude (V), 
hold time (H), valley width (W), and time interval (T), and develop 

Fig. 3. Real-time triboelectric signal acquisition. (a) Electronic circuit of the single-channel trans-impedance amplifier. (b) Filtered and unfiltered output signals. (c) 
Photographs of three bending states of the index finger (1, 2, 3) and its release state (4). (d) The corresponding signal in (c). (e), (f) The signal with a different hold 
time (H) and valley width (W). 
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intuitive multi-dimensional HMI. Fig. 3c shows the bending motion of 
the index finger at different bending angles and its release status. The 
corresponding experimental data preprocessed by the customized PCB is 
presented in Fig. 3d. Note that the voltage data is transformed as a 
relative value for better understanding. Each motion is continuously 
repeated four times, demonstrating the reliability of output signals. It is 
attributed to the excellent bending angle resolution of the BA-TENG, as 
discussed in Fig. 2, enabling the signal amplitudes to express the 
bending levels of the finger. 

Besides, the valley and the peak of the triboelectric signal correspond 
to the finger bending and releasing, respectively, as shown in Fig. 3e. 
Accordingly, the hold time (H), defined as the interval time between the 
signal valley and the signal peak in one bending-release cycle of fingers, 
can be extracted as another signal feature. Three sets of signal output 
with different H are compared in Fig. 3e. Additionally, the valley width 
of the triboelectric signal is affected by the bending speed of the finger. 
Here, the width is defined as the time when the voltage reaches and falls 
below 40% of the corresponding valley value, as shown in Fig. 3f. It can 
be seen that the quick bending of the finger causes a narrow valley 
width, while slow bending responds to a wide one. Hence, the contin
uous finger motion can be described by the valley width (W). 

2.5. Demonstration of the intelligent IoT and robotic hand control 

As a primary verification for the glove-based HMI for intelligent IoT 
and assistive technology, the detected triboelectric outputs were used to 
project the finger motions into light-brightness control and robotic hand 
control using multi-dimensional signal features. The circuit connection 
for the wireless light and robotic hand control is depicted in Fig. 1c. The 
receiver is connected to a microcontroller (MCU) for the light and ro
botic hand control. To intuitively demonstrate the signal profile and 
features of the triboelectric output, LabVIEW was used to visualize the 

signal processing on a computer. The experimental data on the bending 
angle resolution of the glove-based HMI is shown in Fig. 4a, where eight 
bending statuses of the finger can be explicitly distinguished. It is due to 
the BA-TENG unit’s outstanding resolution to the bending angle. Note 
that each curve is relatively shifted by 0.5 V in the vertical axis for 
display purposes. The signal valley corresponds to the finger bending, as 
mentioned in the signal acquisition part. Therefore, light can be dimed 
at different levels corresponding to different finger bending angles, as 
shown in Fig. 4b and Video S1. Figs. 4b-1, 2, and 3 corresponds to the 
marked signal profiles in Fig. 4a. The glove offers more states than the 
state “on” and state “off” in light control, accommodating diversified 
smart home scenarios. Additionally, utilizing the signal’s valley width, 
the bending speed of fingers could intuitively control the speed of the 
light liming, as shown in Fig. 4c and Video S1. 

Supplementary material related to this article can be found online at 
doi:10.1016/j.nanoen.2021.106330. 

Besides the amplitude and signal width, hold time is another indis
pensable signal feature of finger motions, depending on the bending 
time of fingers. Combing these three signal features, advanced robotic 
hand control can be achieved. Five BA-TENG were attached to the glove 
to detect each finger’s motion. As defined in Fig. 3, the signal valley and 
peak of the triboelectric outputs are defined as commands of grab and 
release, respectively. Hold time (H) determines the grabbing time of the 
robotic hand; signal valley (V) controls the grabbing levels of the robotic 
hand, and the signal width (W) corresponds to the bending speed of the 
robotic hand. Fig. 4d shows the real-time voltage profiles of the finger 
motions. Note that the slight difference in signal magnitudes is ascribed 
to the different bending states of five fingers. To demonstrate the control 
of the robotic hand with different patterns, we pre-set the robotic hand 
with three hold time, three different gabbing levels, and two different 
grabbing speeds, which can be triggered by the output signal of the 
glove-based HMI. As shown in Video S2, for the control of the grabbing 

Fig. 4. Light-brightness control and advanced robotic control. (a) The real-time signal output from the index finger at eight bending angles. (b) Screenshots of the 
video showing the various light-brightness control through different finger bending angles. (c) Real-time signal output to control the speed of light dimming. (d) Real- 
time signal output to control a robotic hand with three different hold time (H), three different valley amplitudes (V), and two valley width (W). (e) Screenshots of the 
demonstration showing the advanced robotic hand control for different-object grab. 
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speed, at a slow bending speed of the finger where the valley width (W) 
of the signal is larger than the threshold, the robotic hand grabbed at a 
slow speed. Conversely, when the human finger bends quickly, gener
ating a narrow valley width signal, the robotic hand recognized it and 
grabbed at fast accordingly. It works the same for grabbing with 
different levels and hold time. As a result, by analyzing the proposed 
three signal features from the BA-TENG, an advanced robotic hand 
control can be achieved from grabbing time, grabbing degree, and 
grabbing speed. The multi-dimensional and intuitive manipulating 
process reveals the BA-TENG’s potential in assistive technology. As 
shown in Fig. 4e and Video S2, the robotic hand is controlled by the BA- 
TENG based glove to grab a plastic block and an egg at different grab
bing speeds, preventing damages to the egg. 

Supplementary material related to this article can be found online at 
doi:10.1016/j.nanoen.2021.106330. 

2.6. Application of the machine-learning-assisted virtual keyboard with 
user identification 

Glove-based HMI’s recent advances have led to a renewed interest in 
a more intelligent and personalized system. Hence, the multi- 
dimensional detection of finger motions incorporated with advanced 

data analysis techniques is the key to the research of HMIs [35]. Machine 
learning has been widely used in the area of TENG-based HMI for data 
analysis, such as gait analysis [19,60], object recognition [37], 
sign-language recognition [46], and smart floor monitoring [61]. 
Herein, a customized SVM-based software platform was developed and 
integrated with the glove-based HMI to construct a user identification 
system (Fig. 5a). Three BA-TENGs serve to convert the finger bending 
into digital signals. Channel 1–3 corresponds to the thumb, index, and 
middle finger, respectively. Each channel corresponds to 3 digits ac
cording to different magnitudes of the signal valley. After investigating 
the voltage ranges generated by 7 users using glove-based HMI, we set 
the triggering voltage thresholds for the three numbers as − 0.15 V, 
− 0.225 V, and − 0.30 V, respectively; each number corresponds to a 
voltage range of 0.075 V (Fig. 5b). Therefore, a virtual keyboard can be 
realized by bending fingers at three different angles, thereby removing 
the constraints of a physical keyboard and widening its application. 

Besides, for a number series generated by the virtual keyboard, the 
multi-dimensional keystroke features can be obtained using specific 
signal process techniques (Note S2, Supporting information), including 
signal magnitudes, signal width, and the time interval between two 
numbers. Since the keystroke dynamics is a biometric behavior, its 
ballistic nature and non-invasive monitoring characteristics make it a 

Fig. 5. (a) A virtual keyboard with user identification based on the smart glove (b) Real-time signal output of 9 numbers through 3 channels (C1-C3). (c) Finger 
motions to generate the password ‘1–3–4–7′. (d) Real-time password signals with 11 extracted features. (e) Process flow of the training and real-time identification. 
((f) The Confusion maps of 7 participants using 11 signal features. (g) Classification accuracy using 11, 8, and 7 features, respectively. (h) Screenshots of the video 
demonstrating real-time user identification. 

Y. Luo et al.                                                                                                                                                                                                                                      

https://doi.org/10.1016/j.nanoen.2021.106330


Nano Energy 89 (2021) 106330

7

candidate for improving the recognition systems [54]. Here, for an 
exemplifying number sequence consisting of 4 digits “1–3–4–7′′

(Fig. 5c), a total of 11 features can be extracted accordingly, the valley 
voltages of each number V1, V2, V3, V4, the valley widths of each number 
W1, W2, W3, W4, and the time intervals between each number T1, T2, T3. 
Vi, Wi, (i = 1, 2, 3, 4) is defined in Fig. 3. Ti, (i = 1, 2, 3) is defined as the 
time between two adjacent signal valleys, as shown in Fig. 5d. A total of 
350 sets of data were obtained from 7 users (50 for each), showing their 
typical typing behaviors using the virtual keyboard (Fig. S7). During the 
training process, the feature vectors of different users are used to build 
user profile modes via supervised learning with a support vector ma
chine (SVM). The multi-class SVM classifier is generated by building 
multiple binary-class SVM classifiers, distinguishing one class of the 
acquired three-channel signal pattern and the rest (Note S3, Supporting 
information). In the real-time identification process, the trained 
multi-class SVM classifier is adopted to identify the users based on the 
feature pattern of the input data (Fig. 5e). The dataset is randomly 
divided for training (90%) and validation (10%). Fig. 5f shows the 
confusion matrix obtained from the 10-fold cross-validation classifica
tion with an overall validation accuracy of 93.1%. The output class 
represents the predicted results of the trained model. Additionally, the 
testing accuracy obtained from another 70 data (10 for each) is 91.4%. 
The good accuracy is attributed to the multi-dimensional signal features 
obtained from the smart glove. As shown in Fig. 5g, the dataset with 
eight-dimension features (V1, V2, V3, V4, W1, W2, W3, W4) has a lower 
validation and testing accuracy of 86.6% and 82.9%; the dataset with 
seven-dimension features (V1, V2, V3, V4, T1, T2, T3) has a validation and 
testing accuracy of 85.1% and 82.9%, respectively. Fig. 5h provides an 
overview of the virtual keyboard with identification using the 
BA-TENG-based glove. The imposters knowing the correct password still 
cannot log into the computer systems unless the typing dynamics match 
the one registered in the system, as demonstrated in Video S3. 

Supplementary material related to this article can be found online at 
doi:10.1016/j.nanoen.2021.106330. 

3. Conclusions 

Intuitive and immersive manipulating experience in human-machine 
interactions is the ultimate aim of glove-based HMIs. This requires not 
only the straightforward logic between human finger gestures and the 
projecting commands but also a minimalist design of the interface for a 
better manipulating experience to users. In this work, we proposed an 
alternative solution by designing a simple-structured and high bending 
angle resolution TENG and extracting multi-dimensional signal features 
from its triboelectric outputs. Consequently, diversified human-machine 
interactions, ranging from light-brightness control and advanced robotic 
hand control, have been successfully realized. Moreover, by leveraging 
the machine learning technique, a virtual keyboard with user identifi
cation is achieved by extracting keystroke dynamics patterns from 
multi-dimensional signal features. Benefit from the minimalist design, 
the proposed glove-based multi-dimensional HMIs can be readily pro
duced on a large scale with low cost and easy fabrication. This work 
exhibits the applications of the proposed HMIs for the intelligent IoT, 
assistive technology, intelligent recognition systems, and more appli
cation areas with intuitive and immersive manipulating experiences. 

4. Experimental section 

4.1. BA-TENG fabrication 

The simple-structured BA-TENG consists of two flexible and low-cost 
materials, PDMS and silicone rubber. A shape mold was used for fabri
cating both PDMS and silicone rubber films, as shown in Fig. S2. The 
PDMS was prepared by thoroughly mixing the base monomer and curing 
agent at a volume ratio of 10: 1 (Dow Corning Sylgard 184). The silicone 
rubber film was prepared by mixing its two components at a volume 

ratio of 1:1 (Ecoflex supersoft silicone 00-50, Smooth-On, Inc.). The gas 
bubbles in the two mixture were removed through 10-minute degas
ification at room temperature. Then the two mixture was injected in 
their molds, respectively. After partially cured at 80◦ for 20 min. Two Cu 
mesh electrodes were embedded in the PDMS and silicone rubber, 
respectively. Then the two films were cured entirely for 2 h. The TENG 
unit size is presented in Fig. S2d, where both PDMS and silicone rubber 
layers are 3 cm × 1 cm × 0.06 ( ± 0.02) cm, and the Cu mesh is 
1 × 1 cm. The SEM images of the PDMS, silicone rubber, and Cu mesh 
are shown in Fig. S3. 

4.2. Characterization and measurement 

The morphology and microstructure of the Cu mesh, silicone rubber, 
and PDMS were characterized by Scanning electron microscopy (SEM, 
Hitachi SU8010). A programmable electrometer (Keithley 6514) was 
adopted to evaluate the electrical output of the BA-TENG. A linear motor 
system is used to provide cyclic stimuli in the measurement. The 
graphical user interface with real-time control and analysis was realized 
through LabVIEW® 2019 with MATLAB® module. Inspire-Robots, Bei
jing provided the controlled robotic hand (RH56DF3-XR/L). COMSOL 
Multiphysics software was employed for the simulation of the potential 
distribution. All the experiments were conducted at atmospheric pres
sure (1.01 × 105 Pa) and room temperature unless otherwise stated. 
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